A NEW TECHNIQUE ESTIMATING LOCATION OF MEAN JOINT CENTERS OF ROTATION WITH ASSOCIATED DISPERSIONS AND ASSESSING TO FUNCTIONAL COORDINATE SYSTEM OF MOVING LIMB SEGMENTS

2006 ◽  
Vol 06 (04) ◽  
pp. 373-384
Author(s):  
ERIC BERTHONNAUD ◽  
JOANNÈS DIMNET

Joint centers are obtained from data treatment of a set of markers placed on the skin of moving limb segments. Finite helical axis (FHA) parameters are calculated between time step increments. Artifacts associated with nonrigid body movements of markers entail ill-determination of FHA parameters. Mean centers of rotation may be calculated over the whole movement, when human articulations are likened to spherical joints. They are obtained using numerical technique, defining point with minimal amplitude, during joint movement. A new technique is presented. Hip, knee, and ankle mean centers of rotation are calculated. Their locations depend on the application of two constraints. The joint center must be located next to the estimated geometric joint center. The geometric joint center may migrate inside a cube of possible location. This cube of error is located with respect to the marker coordinate systems of the two limb segments adjacent to the joint. Its position depends on the joint and the patient height, and is obtained from a stereoradiographic study with specimen. The mean position of joint center and corresponding dispersion are obtained through a minimization procedure. The location of mean joint center is compared with the position of FHA calculated between different sequential steps: time sequential step, and rotation sequential step where a minimal rotation amplitude is imposed between two joint positions. Sticks are drawn connecting adjacent mean centers. The animation of stick diagrams allows clinical users to estimate the displacements of long bones (femur and tibia) from the whole data set.

1993 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
N.A. Hoenich ◽  
P.T. Smirthwaite ◽  
C. Woffindin ◽  
P. Lancaster ◽  
T.H. Frost ◽  
...  

Recirculation is an important factor in single needle dialysis and, if high, can compromise treatment efficiency. To provide information regarding recirculation characteristics of access devices used in single needle dialysis, we have developed a new technique to characterise recirculation and have used this to measure the recirculation of a Terumo 15G fistula needle and a VasCath SC2300 single lumen catheter. The experimentally obtained results agreed well with those established clinically (8.5 ± 2.4% and 18.4 ± 3.4%). The experimental results have also demonstrated a dependence on access type, pump speeds and fistula flow rate. A comparison of experimental data with theoretical predictions showed that the latter exceeded those measured with the largest contribution being due to the experimental fistula.


1997 ◽  
Vol 12 (11) ◽  
pp. 1967-1974 ◽  
Author(s):  
Kazuaki Kuroda ◽  
Mark A. Barton ◽  
Atsushi Onae ◽  
Yukinobu Miki

We propose the application of a new technique, the X pendulum, to determine the Newtonian gravitational constant G. We evaluate the likely experimental errors for configurations realizable with existing technologies and show that improvement of the accuracy by an order of magnitude or more is possible.


1970 ◽  
Vol 13 (4) ◽  
pp. 441-442
Author(s):  
D. Fieldhouse

One very interesting and important problem in ring theory is the determination of the position of the singular ideal of a ring with respect to the various radicals (Jacobson, prime, Wedderburn, etc.) of the ring. A summary of the known results can be found in Faith [3, p. 47 ff.] and Lambek [5, p. 102 ff.]. Here we use a new technique to obtain extensions of these results as well as some new ones.Throughout we adopt the Bourbaki [2] conventions for rings and modules: all rings have 1, all modules are unital, and all ring homomorphisms preserve the 1.


Sign in / Sign up

Export Citation Format

Share Document