WHICH MORPHOLOGIC AND HEMODYNAMIC CHARACTERISTICS PREDICT INTRACRANIAL FUSIFORM ANEURYSMS RUPTURE? A PATIENT-SPECIFIC COMPUTATIONAL FLUID DYNAMICS STUDY

2017 ◽  
Vol 17 (03) ◽  
pp. 1750070
Author(s):  
YAN CHEN ◽  
YI-BIN FANG ◽  
PENG-FEI YANG ◽  
QING-HAI HUANG ◽  
JIAN-MIN LIU

To identify hemodynamic and morphological parameters leading to increased risk of intracranial fusiform aneurysms (IFA) rupture using computational fluid dynamics (CFDs). A total of 24 patient-specific fusiform aneurysms models on vertebral artery were reconstructed from 3D angiography images. 11 ruptured cases and 13 unruptured cases were included. Morphologic parameters were measured and CFD parameters were calculated using CFD simulation. The length of the aneurysm is significantly shorter in ruptured group than in unruptured group. The ratio of the width to the length of an aneurysm (WLR) and the ratio of the cross-section area to the length of an aneurysm (ALR) to the averaged cross sectional areas of the inlet and outlet of the parent artery (ALaR) were significantly higher in ruptured group compared with unruptured group. Wall shear stress (WSS) of the aneurysm was normalized to the WSS of the parent artery. Hemodynamically, only low WSS was associated with higher risk of rupture. Ruptured IFAs are shorter, have bigger WLR, ALaR, and lower WSS, compared with unruptured IFAs.

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Yoshifumi Hayashi ◽  
Takanobu Yagi ◽  
Yasutaka Tobe ◽  
Yuki Iwabuchi ◽  
Momoko Yamanashi ◽  
...  

[Background and purpose] During a clipping surgery, an unruptured intracerebral aneurysm often presented a spatially-localized red-colored "wall-thinning" area. The wall thinning was believed to be related with the risk of rupture. The present aim is given to investigate the predictability of a wall thinning area using computational fluid dynamics (CFD). [Method] We chose 16 unruptured aneurysms (12 MCA, 4 ICA) with clipping surgery and 24 wall-thinning areas were detected from the operation video. CFD study was carried out using patient-specific angiographic data. The wall shear stress (WSS) and the wall pressure were evaluated. [Results] The WSS magnitude was found to be uncorrelated with wall thinning. On the other hand, 20 wall-thinning areas (83%) exhibited a presence of “flow impingement”, which was defined to give the spatial variation of the WSS vector to be divergent with the local elevation of the wall pressure. From CFD, 27 flow impingements were detected and classified according to the degree of divergence. Seven impingements are full-divergent and all of them (100%) are located in the wall thinning areas. The remaining 20 impingements were partial-divergent and 13 impingements of them (65%) were located in the wall thinning areas. A classification of full-/partial-divergent flow impingement was statistically significant for the prediction of wall-thinning areas (P<0.01). [Conclusions] The full-divergent flow impingement was found to be a reliable predictor of the wall thinning area in unruptured intracerebral aneurysms. The present results demonstrated the malignant nature of flow impingement for promoting the thinning of aneurysmal walls.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Jürgen Endres ◽  
Markus Kowarschik ◽  
Thomas Redel ◽  
Puneet Sharma ◽  
Viorel Mihalef ◽  
...  

Increasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities, virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired angiograms. For the generation of virtual angiograms, several patient-specific parameters have to be incorporated to obtain virtual angiograms which match the acquired angiograms as best as possible. For this purpose, a workflow is presented and demonstrated involving multiple phantom and patient cases.


2018 ◽  
Vol 32 (2) ◽  
pp. 332-339 ◽  
Author(s):  
Maruf Matmusaev ◽  
Yasuhiro Yamada ◽  
Tsukasa Kawase ◽  
Riki Tanaka ◽  
Miyatani Kyosuke ◽  
...  

Abstract Introduction and Objective: Intracranial aneurysm, also known as brain aneurysm, is a cerebrovascular disorder in which weakness in the wall of a cerebral artery causes a localized dilation or ballooning of the blood vessel. There is no objective way, device or tools, of predicting rupture of aneurysm so far. Computational fluid dynamics (CFDs) was proposed as a tool to identify the rupture risk. Purpose of study: To reveal the correlation of CFD findings with intraoperative microscopic findings and prove the relevance of CFDin the prediction of rupture risk and in the management of unruptured intracranial aneurysms. Subjects and Methods: A prospective cohort study was conducted inNeurosurgery department of Fujita Health University Banbuntane Hotokukai Hospital, Nagoya, Japanduring a 3‑month period in 2018,from January to March, Ten patientswere diagnosed unruptured intracranial aneurysms (UIA). In diagnosis computed tomography (CT) angiogram, CFD and digital subtraction angiogram were included. Intraoperatively microscopic examination of the aneurysm wall was carried out and images recorded. The correlation between microscopic dome morphology and CFD information was performed. Results: Nine cases were found intraoperatively to have a higher risk of rupture based on the thinning of the wall. One cases had an atherosclerotic wall. All cases had low wall shear stress (WSS). In 90 % of cases Low WSS was able to predict the potency rupture risk in the near future. Conclusions: This study of CFD and its correlation with intraoperativefindings of the aneurysm suggested that low WSS of the aneurysm wall is associated with thin wall aneurysm and hence increased risk of aneurysm rupture. Thus CFD can be used to predict the risk of rupture of unruptured aneurysm and for planning of its treatment.


2019 ◽  
Vol 12 (6) ◽  
pp. 626-630 ◽  
Author(s):  
Nicole M Cancelliere ◽  
Mehdi Najafi ◽  
Olivier Brina ◽  
Pierre Bouillot ◽  
Maria I Vargas ◽  
...  

Background and purposeComputational fluid dynamics (CFD) can provide valuable information regarding intracranial hemodynamics. Patient-specific models can be segmented from various imaging modalities, which may influence the geometric output and thus hemodynamic results. This study aims to compare CFD results from aneurysm models segmented from three-dimensional rotational angiography (3D-RA) versus novel four-dimensional CT angiography (4D-CTA).MethodsFourteen patients with 16 cerebral aneurysms underwent novel 4D-CTA followed by 3D-RA. Endoluminal geometries were segmented from each modality using an identical workflow, blinded to the other modality, to produce 28 'original' models. Each was then minimally edited a second time to match length of branches, producing 28 additional 'matched' models. CFD simulations were performed using estimated flow rates for 'original' models (representing real-world experience) and patient-specific flow rates from 4D-CTA for 'matched' models (to control for influence of modality alone).ResultsOverall, geometric and hemodynamic results were consistent between models segmented from 3D-RA and 4D-CTA, with correlations improving after matching to control for operator-introduced variability. Despite smaller 4D-CTA parent artery diameters (3.49±0.97 mm vs 3.78±0.92 mm for 3D-RA; p=0.005) and sac volumes (157 (37–750 mm3) vs 173 (53–770 mm3) for 3D-RA; p=0.0002), sac averages of time-averaged wall shear stress (TAWSS), oscillatory shear (OSI), and high frequency fluctuations (measured by spectral power index, SPI) were well correlated between 3D-RA and 4D-CTA 'matched' control models (TAWSS, R2=0.91; OSI, R2=0.79; SPI, R2=0.90).ConclusionsOur study shows that CFD performed using 4D-CTA models produces reliable geometric and hemodynamic information in the intracranial circulation. 4D-CTA may be considered as a follow-up imaging tool for hemodynamic assessment of cerebral aneurysms.


2015 ◽  
Vol 21 (5) ◽  
pp. 586-591 ◽  
Author(s):  
Martin Sandve Alnæs ◽  
Kent-Andre Mardal ◽  
Søren Bakke ◽  
Angelika Sorteberg

Therapeutic parent artery flow reversal is a treatment option for giant, partially thrombosed basilar tip aneurysms. The effectiveness of this treatment has been variable and not yet studied by applying computational fluid dynamics. Computed tomography images and blood flow velocities acquired with transcranial Doppler ultrasonography were obtained prior to and after bilateral endovascular vertebral artery occlusion for a giant basilar tip aneurysm. Patient-specific geometries and velocity waveforms were used in computational fluid dynamics simulations in order to determine the velocity and wall shear stress changes induced by treatment. Therapeutic parent artery flow reversal lead to a dramatic increase in aneurysm inflow and wall shear stress (30 to 170 Pa) resulting in an increase in intra-aneurysmal circulation. The enlargement of the circulated area within the aneurysm led to a re-normalization of the wall shear stress and the aneurysm remained stable for more than 8 years thereafter. Therapeutic parent artery flow reversal can lead to unintended, potentially harmful changes in aneurysm inflow which can be quantified and possibly predicted by applying computational fluid dynamics.


2021 ◽  
Vol 11 (4) ◽  
pp. 520
Author(s):  
Emily R. Nordahl ◽  
Susheil Uthamaraj ◽  
Kendall D. Dennis ◽  
Alena Sejkorová ◽  
Aleš Hejčl ◽  
...  

Computational fluid dynamics (CFD) has grown as a tool to help understand the hemodynamic properties related to the rupture of cerebral aneurysms. Few of these studies deal specifically with aneurysm growth and most only use a single time instance within the aneurysm growth history. The present retrospective study investigated four patient-specific aneurysms, once at initial diagnosis and then at follow-up, to analyze hemodynamic and morphological changes. Aneurysm geometries were segmented via the medical image processing software Mimics. The geometries were meshed and a computational fluid dynamics (CFD) analysis was performed using ANSYS. Results showed that major geometry bulk growth occurred in areas of low wall shear stress (WSS). Wall shape remodeling near neck impingement regions occurred in areas with large gradients of WSS and oscillatory shear index. This study found that growth occurred in areas where low WSS was accompanied by high velocity gradients between the aneurysm wall and large swirling flow structures. A new finding was that all cases showed an increase in kinetic energy from the first time point to the second, and this change in kinetic energy seems correlated to the change in aneurysm volume.


2021 ◽  
Vol 10 (7) ◽  
pp. 1348
Author(s):  
Karol Wiśniewski ◽  
Bartłomiej Tomasik ◽  
Zbigniew Tyfa ◽  
Piotr Reorowicz ◽  
Ernest Bobeff ◽  
...  

Background: The objective of our project was to identify a late recanalization predictor in ruptured intracranial aneurysms treated with coil embolization. This goal was achieved by means of a statistical analysis followed by a computational fluid dynamics (CFD) with porous media modelling approach. Porous media CFD simulated the hemodynamics within the aneurysmal dome after coiling. Methods: Firstly, a retrospective single center analysis of 66 aneurysmal subarachnoid hemorrhage patients was conducted. The authors assessed morphometric parameters, packing density, first coil volume packing density (1st VPD) and recanalization rate on digital subtraction angiograms (DSA). The effectiveness of initial endovascular treatment was visually determined using the modified Raymond–Roy classification directly after the embolization and in a 6- and 12-month follow-up DSA. In the next step, a comparison between porous media CFD analyses and our statistical results was performed. A geometry used during numerical simulations based on a patient-specific anatomy, where the aneurysm dome was modelled as a separate, porous domain. To evaluate hemodynamic changes, CFD was utilized for a control case (without any porosity) and for a wide range of porosities that resembled 1–30% of VPD. Numerical analyses were performed in Ansys CFX solver. Results: A multivariate analysis showed that 1st VPD affected the late recanalization rate (p < 0.001). Its value was significantly greater in all patients without recanalization (p < 0.001). Receiver operating characteristic curves governed by the univariate analysis showed that the model for late recanalization prediction based on 1st VPD (AUC 0.94 (95%CI: 0.86–1.00) is the most important predictor of late recanalization (p < 0.001). A cut-off point of 10.56% (sensitivity—0.722; specificity—0.979) was confirmed as optimal in a computational fluid dynamics analysis. The CFD results indicate that pressure at the aneurysm wall and residual flow volume (blood volume with mean fluid velocity > 0.01 m/s) within the aneurysmal dome tended to asymptotically decrease when VPD exceeded 10%. Conclusions: High 1st VPD decreases the late recanalization rate in ruptured intracranial aneurysms treated with coil embolization (according to our statistical results > 10.56%). We present an easy intraoperatively calculable predictor which has the potential to be used in clinical practice as a tip to improve clinical outcomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David R. Rutkowski ◽  
Alejandro Roldán-Alzate ◽  
Kevin M. Johnson

AbstractBlood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.


Sign in / Sign up

Export Citation Format

Share Document