TRAUMATIC INJURY OF ASTROCYTES: AN IN VITRO STUDY

2018 ◽  
Vol 18 (04) ◽  
pp. 1850040
Author(s):  
YI HUA ◽  
CHRISTINA L. WILSON ◽  
SHENGMAO LIN ◽  
DIGANTA DUTTA ◽  
SRIVATSAN KIDAMBI ◽  
...  

The objective of this work is to determine the injury criterion for primary rat cortical astrocytes through an in vitro traumatic injury model. The compressed air pressure was used to reproduce typical blast pressure profile, which could induce biaxial strain up to 100% in millisecond for cells cultured on flexible membrane utilizing a controlled cellular injury (CCI) device. The nominal pressure and time settings could be adjusted to accommodate a wide range of membrane strain and strain rate, which was estimated from finite element models. The relationship between the peak membrane displacement/strain and the nominal settings of the CCI device was then established. The model was calibrated using both high-speed imaging system and a theoretical model. The viability and morphology of the astrocytes were characterized and correlated with the strain level. Three different regimes were identified in the stretch-induced dose-response curves of the primary cortical astrocytes, with a sharp decline from live to dead in a narrow range of membrane strain (18%–35%). The level of actin organization of the astrocytes decreased as the membrane strain increased. This work could facilitate the understanding of cellar behaviors subjected to mild blast loadings and the potential tissue engineering therapeutics.

2018 ◽  
Vol 183 ◽  
pp. 02043 ◽  
Author(s):  
Bratislav Lukić ◽  
Dominique Saletti ◽  
Pascal Forquin

This paper presents the measurement results of the dynamic tensile strength of a High Performance Concrete (HPC) obtained using full-field identification method. An ultra-high speed imaging system and the virtual fields method were used to obtain this information. Furthermore the measurement results were compared with the local point-wise measurement to validate the data pressing. The obtained spall strength was found to be consistently 20% lower than the one obtained when the Novikov formula is used.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junjie Zeng ◽  
Wenying Zhao ◽  
Shuhua Yue

The high attrition rates of anti-cancer drugs during clinical development remains a bottleneck problem in pharmaceutical industry. This is partially due to the lack of quantitative, selective, and rapid readouts of anti-cancer drug activity in situ with high resolution. Although fluorescence microscopy has been commonly used in oncology pharmacological research, fluorescent labels are often too large in size for small drug molecules, and thus may disturb the function or metabolism of these molecules. Such challenge can be overcome by coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, high spatial resolution, and high-speed imaging, without the need of any labeling. Coherent Raman scattering microscopy has tremendously improved the understanding of pharmaceutical materials in the solid state, pharmacokinetics of anti-cancer drugs and nanocarriers in vitro and in vivo. This review focuses on the latest applications of coherent Raman scattering microscopy as a new emerging platform to facilitate oncology pharmacokinetic research.


Author(s):  
Michael Döllinger ◽  
Franziska Gröhn ◽  
David A. Berry ◽  
Ulrich Eysholdt ◽  
Georg Luegmair

Purpose Previous studies have confirmed the influence of dehydration and an altered mucus (e.g., due to pathologies) on phonation. However, the underlying reasons for these influences are not fully understood. This study was a preliminary inquiry into the influences of mucus architecture and concentration on vocal fold oscillation. Method Two excised human larynges were investigated in an in vitro setup. The oscillations of the vocal folds at various airflow volume rates were recorded through the use of high-speed imaging. Engineered mucus containing polymers (interconnected polymers and linear polymers) was applied to the vocal folds. From the high-speed footage, glottal parameters were extracted through the use of objective methods and were compared to a gold standard (physiological saline solution). Results Variations were found for all applications of mucus. Fundamental frequency dropped and the oscillatory behavior (speed quotient [SQ], closing quotient [CQ]) changed for both larynges. The 2 applied mucus architectures displayed different effects on the larynges. The interconnected polymer displayed clear low-pass filter characteristics not found for the linear polymer. Increase of polymer concentration affected parameters to a certain point. Conclusion The data confirm results found in previous studies. Furthermore, the different effects—comparing architecture and concentration—suggest that, in the future, synthetic mucus can be designed to improve phonation.


2003 ◽  
Author(s):  
Adrian M. Holland ◽  
Colin P. Garner

This paper discusses the production and use of laser-machined surfaces that provide enhanced nucleate boiling and heat transfer characteristics. The surface features of heated plates are known to have a significant effect on nucleate boiling heat transfer and bubble growth dynamics. Nucleate boiling starts from discrete bubbles that form on surface imperfections, such as cavities or scratches. The gas or vapours trapped in these imperfections serve as nuclei for the bubbles. After inception, the bubbles grow to a certain size and depart from the surface. In this work, special heated surfaces were manufactured by laser machining cavities into polished aluminium plates. This was accomplished with a Nd:YAG laser system, which allowed drilling of cavities of a known diameter. The size range of cavities was 20 to 250 micrometers. The resulting nucleate pool boiling was analysed using a novel high-speed imaging system comprising an infrared laser and high resolution CCD camera. This system was operated up to a 2 kHz frame rate and digital image processing allowed bubbles to be analysed statistically in terms of departure diameter, departure frequency, growth rate, shape and velocity. Data was obtained for heat fluxes up to 60 kW.m−2. Bubble measurements were obtained working with water at atmospheric pressure. The surface cavity diameters were selected to control the temperature at which vapour bubbles started to grow on the surface. The selected size and spacing of the cavities was also explored to provide optimal heat transfer.


ORL ◽  
2012 ◽  
Vol 74 (4) ◽  
pp. 208-210 ◽  
Author(s):  
Kenichi Kaneko ◽  
Koichi Sakaguchi ◽  
Masato Inoue ◽  
Haruo Takahashi

2014 ◽  
Vol 903 ◽  
pp. 187-193 ◽  
Author(s):  
Abdul Aziz Jaafar ◽  
Anwar P.P. Abdul Majeed ◽  
S.M. Sapuan ◽  
Shahnor Basri

This paper presents the velocity measurements for an impact test on a laminated fibre-glass composite plate. The free flight kinematic properties of a blunt-nosed cylindrical projectile on the upstream and downstream of a test coupon were measured using a high-speed camera imaging system. A visual geometric detection technique is discussed and it is shown that the uncertainties of velocity measurements are associated with an imposed constraint on the camera viewing area and shutter speed.


Author(s):  
Puyuan Wu ◽  
Jun Chen ◽  
Paul E. Sojka

Abstract A rotary compressor relies on an eccentric rolling piston, which rotates at high speed, to compress gas in the compression chamber. The oil in the rotary compressor is used for lubricating the bearing and sealing the clearance of sliding parts. However, the oil can exhaust from the rotary compressor by the refrigerant flow and reduce the reliability of the compressor as a result. Thus, studying the behavior of oil droplets distribution in a rotary compressor is a major challenge for manufacturers who rely on CFD tools to predict the multiphase flow. By modifying a rotary compressor, the oil behavior inside the cylinder is observed and recorded by a high-speed imaging system. In the current phase, multiple targeted locations, including the space between the bearing housing and the stator, and the space above the stator are measured in different conditions. The number, size, velocity, and morphology of oil droplets are analyzed based on multiple snapshots. The result can assist designers in improving the CFD analysis of compressors and ultimately reducing the oil discharge rate (ODR).


Sign in / Sign up

Export Citation Format

Share Document