rolling piston
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 1180 (1) ◽  
pp. 012047
Author(s):  
J Xu ◽  
B Yu ◽  
O X Yang ◽  
S P Ding ◽  
H H Zhao

2021 ◽  
Author(s):  
Puyuan Wu ◽  
Jun Chen ◽  
Paul E. Sojka ◽  
Yang Li ◽  
Hongjun Cao

Abstract Hundreds of millions of Air conditioning (AC) systems are produced each year. Many of them, especially small AC appliances, use rotary compressors as the system’s heat pump due to their simple structure and high efficiency in a small system. Lubricant oil is used in the rotary compressor to lubricate the moving parts, such as the crankshaft and the rolling piston, and to seal the clearance between the sliding parts, e.g., the clearance between the rolling piston and the cylinder, and the vane and the cylinder. As the compressed refrigerant vapor is discharged from the cylinder through the discharge port, part of lubricant oil in the cylinder would be carried by the vapor and atomize into small droplets in the lower cavity during the discharge process, which is complicated and highly-coupled. Some of these oil droplets would ultimately be exhausted from the compressor and enter other parts in the system, reducing the compressor reliability and deteriorating the heat transfer of the condenser and the evaporator in the system. Our previous research studied the atomization of the lubricant oil during the discharge process in the compressor’s lower cavity. However, the oil droplets’ behavior downstream of the lower cavity is unknown. Thus, studying the oil droplets’ behavior after passing through the rotor/stator can help understand how the rotor/stator would affect the droplet size distribution and movement, thus controlling the flow rate of escaped oil droplets. In this study, a hot gas bypass test rig is built to run a modified rotary compressor with sapphire windows right above the rotor/stator. The oil droplets’ size distribution and movement along the radial direction are obtained at the shaft’s rotating frequency of 30 and 60 Hz by shadowgraph. It is found that droplet size at 30 and 60 Hz varies little in the inner region of the rotor/stator clearance and would increase sharply above the clearance and keep increasing in the outer region of the clearance. More importantly, droplet velocity has a downward velocity component at the inner region and an upward velocity component at the outer region of the rotor/stator clearance. With the result of droplet size distribution and droplet velocity above the rotor/stator, we propose the model of the oil droplet’s path above the rotor/stator, which can be understood as the coupling of a swirling jet and a rotating disk.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 125
Author(s):  
Kuan Thai Aw ◽  
Kim Tiow Ooi

Rotary compressors have been employed in heating and cooling for more than a century and are ubiquitous in daily life but there has not been any comprehensive record of their development and technological advances. This review paper attempts to provide a comprehensive account of the advances in R&D and design evolution of these rotary compressors since their inception, namely the sliding vane compressor, rolling piston compressor, and their design variants in open literature. This is to showcase the current state-of-the-art for these compressors so that researchers can use it as a basis for future work. Based on authors’ insight, inter-disciplinary research combined with advancements in ‘disruptive’ technology such as artificial intelligence and advancements in additive manufacturing might be a promising research direction to bring about improvements in rotary compressor performance to meet mankind’s growing needs for cooling and heating applications.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2526
Author(s):  
Li-Chieh Hsu ◽  
Guo-Wei Wong ◽  
Po-Jui Lu ◽  
Fu-Shun Hsu ◽  
Ying-Chien Chen

In this numerical study, the temperature, pressure and flow structure inside the rotary compressor are obtained to analyze the work consumption and efficiency. The geometry of the compressor such as volume, inlet angle, and mass of reed valve are varied to look for optimal performance and design margin as the suggestions for manufacturing. The work done on refrigerant increases proportionally with the volume of the compressor. However, there is an optimal volume for efficiency. The design margin for inlet angle is determined. The best efficiency exists in a specific inlet angle. Larger mass of reed valve leads to the increase of input power due to the additional resistance from greater inertia, which causes a decrease of efficiency. The flow visualization by simulation diagnoses the potential factors, which may cause noise problem.


2019 ◽  
Vol 63 (4) ◽  
pp. 308-318 ◽  
Author(s):  
Balázs Farkas ◽  
Jenő Miklós Suda

The evaluation of a newly designed oil-free rotary compressor is presented based on transient 3D Computational Fluid Dynamics (CFD) simulations. The simulations are performed at low compression ratios and low pressure ratios and low rotational speeds. To place the results into context, the data presented in related literature was processed and summarized. The methods related to the CFD model of the newly designed compressor were developed, summarized and evaluated. The accessed CFD data are in good agreement with the results of the former rolling piston compressor related investigations. The oil free operation prevents the contamination of the working fluid from lubricant. Since the compressor is planned to work in open cycle within the sensitive environment of thermal heat sources contamination free operation has to be accomplished. However, oil-free operation also results in significantly lower performance based on the modelling results.


Author(s):  
Puyuan Wu ◽  
Jun Chen ◽  
Paul E. Sojka

Abstract A rotary compressor relies on an eccentric rolling piston, which rotates at high speed, to compress gas in the compression chamber. The oil in the rotary compressor is used for lubricating the bearing and sealing the clearance of sliding parts. However, the oil can exhaust from the rotary compressor by the refrigerant flow and reduce the reliability of the compressor as a result. Thus, studying the behavior of oil droplets distribution in a rotary compressor is a major challenge for manufacturers who rely on CFD tools to predict the multiphase flow. By modifying a rotary compressor, the oil behavior inside the cylinder is observed and recorded by a high-speed imaging system. In the current phase, multiple targeted locations, including the space between the bearing housing and the stator, and the space above the stator are measured in different conditions. The number, size, velocity, and morphology of oil droplets are analyzed based on multiple snapshots. The result can assist designers in improving the CFD analysis of compressors and ultimately reducing the oil discharge rate (ODR).


Author(s):  
Balázs Farkas ◽  
Jenö Miklós Suda

Rolling piston compressors are small capacity volumetric machines used mainly in household refrigerator and heat-pump units. One of the main characteristics of the compressor is the way how the pressure builds up within the cylinder. This information can be used in more complex models for further investigations, e.g. to analyse the mechanical and thermal stresses of the compressor components. Modelling methods to resemble the pressurisation process of the rolling piston compressor with non-linear oscillators is presented in this paper. The mathematical description of the non-linear oscillators can be used to produce a continuous signal resembling the pressure fluctuations within the cylinder. For the definition of the necessary functions, the main characteristics of the typical rolling piston pressurisation diagram were identified. At first the pressurisation process was approximated by using the mathematical formula of the common Van der Pol oscillator. The oscillator was modified and extended with a linear second order differential equation to improve the resemblance between the target and model functions. To achieve better agreement with the target diagrams, Morphed non-linear oscillators were established. Polynomial and constructive incremental learning method was used to achieve adequate data fitting and the results of both methods were compared. The results show acceptable conformity and proved to be adequate to provide input data for further investigations i.e. for parametric studies of the compressor design. Besides modelling rolling piston compressors, this method can be applied for other volumetric compressors with cyclic pressurization sequence.


2019 ◽  
Vol 133 ◽  
pp. 111-125
Author(s):  
Kuihua Geng ◽  
Ainong Geng ◽  
Xiao Wang ◽  
Xian Zheng ◽  
Wei Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document