CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION

2019 ◽  
Vol 19 (01) ◽  
pp. 1940005 ◽  
Author(s):  
ULAS BARAN BALOGLU ◽  
ÖZAL YILDIRIM

Background and objective: Deep learning structures have recently achieved remarkable success in the field of machine learning. Convolutional neural networks (CNN) in image processing and long-short term memory (LSTM) in the time-series analysis are commonly used deep learning algorithms. Healthcare applications of deep learning algorithms provide important contributions for computer-aided diagnosis research. In this study, convolutional long-short term memory (CLSTM) network was used for automatic classification of EEG signals and automatic seizure detection. Methods: A new nine-layer deep network model consisting of convolutional and LSTM layers was designed. The signals processed in the convolutional layers were given as an input to the LSTM network whose outputs were processed in densely connected neural network layers. The EEG data is appropriate for a model having 1-D convolution layers. A bidirectional model was employed in the LSTM layer. Results: Bonn University EEG database with five different datasets was used for experimental studies. In this database, each dataset contains 23.6[Formula: see text]s duration 100 single channel EEG segments which consist of 4097 dimensional samples (173.61[Formula: see text]Hz). Eight two-class and three three-class clinical scenarios were examined. When the experimental results were evaluated, it was seen that the proposed model had high accuracy on both binary and ternary classification tasks. Conclusions: The proposed end-to-end learning structure showed a good performance without using any hand-crafted feature extraction or shallow classifiers to detect the seizures. The model does not require filtering, and also automatically learns to filter the input as well. As a result, the proposed model can process long duration EEG signals without applying segmentation, and can detect epileptic seizures automatically by using the correlation of ictal and interictal signals of raw data.

2018 ◽  
Vol 99 ◽  
pp. 24-37 ◽  
Author(s):  
Κostas Μ. Tsiouris ◽  
Vasileios C. Pezoulas ◽  
Michalis Zervakis ◽  
Spiros Konitsiotis ◽  
Dimitrios D. Koutsouris ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4017 ◽  
Author(s):  
Dukhwan Yu ◽  
Wonik Choi ◽  
Myoungsoo Kim ◽  
Ling Liu

The problem of Photovoltaic (PV) power generation forecasting is becoming crucial as the penetration level of Distributed Energy Resources (DERs) increases in microgrids and Virtual Power Plants (VPPs). In order to improve the stability of power systems, a fair amount of research has been proposed for increasing prediction performance in practical environments through statistical, machine learning, deep learning, and hybrid approaches. Despite these efforts, the problem of forecasting PV power generation remains to be challenging in power system operations since existing methods show limited accuracy and thus are not sufficiently practical enough to be widely deployed. Many existing methods using long historical data suffer from the long-term dependency problem and are not able to produce high prediction accuracy due to their failure to fully utilize all features of long sequence inputs. To address this problem, we propose a deep learning-based PV power generation forecasting model called Convolutional Self-Attention based Long Short-Term Memory (LSTM). By using the convolutional self-attention mechanism, we can significantly improve prediction accuracy by capturing the local context of the data and generating keys and queries that fit the local context. To validate the applicability of the proposed model, we conduct extensive experiments on both PV power generation forecasting using a real world dataset and power consumption forecasting. The experimental results of power generation forecasting using the real world datasets show that the MAPEs of the proposed model are much lower, in fact by 7.7%, 6%, 3.9% compared to the Deep Neural Network (DNN), LSTM and LSTM with the canonical self-attention, respectively. As for power consumption forecasting, the proposed model exhibits 32%, 17% and 44% lower Mean Absolute Percentage Error (MAPE) than the DNN, LSTM and LSTM with the canonical self-attention, respectively.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani

Smart grids, advanced information technology, have become the favored intrusion targets due to the Internet of Things (IoT) using sensor devices to collect data from a smart grid environment. These data are sent to the cloud, which is a huge network of super servers that provides different services to different smart infrastructures, such as smart homes and smart buildings. These can provide a large space for attackers to launch destructive cyberattacks. The novelty of this proposed research is the development of a robust framework system for detecting intrusions based on the IoT environment. An IoTID20 dataset attack was employed to develop the proposed system; it is a newly generated dataset from the IoT infrastructure. In this framework, three advanced deep learning algorithms were applied to classify the intrusion: a convolution neural network (CNN), a long short-term memory (LSTM), and a hybrid convolution neural network with the long short-term memory (CNN-LSTM) model. The complexity of the network dataset was dimensionality reduced, and to improve the proposed system, the particle swarm optimization method (PSO) was used to select relevant features from the network dataset. The obtained features were processed using deep learning algorithms. The experimental results showed that the proposed systems achieved accuracy as follows: CNN = 96.60%, LSTM = 99.82%, and CNN-LSTM = 98.80%. The proposed framework attained the desired performance on a new variable dataset, and the system will be implemented in our university IoT environment. The results of comparative predictions between the proposed framework and existing systems showed that the proposed system more efficiently and effectively enhanced the security of the IoT environment from attacks. The experimental results confirmed that the proposed framework based on deep learning algorithms for an intrusion detection system can effectively detect real-world attacks and is capable of enhancing the security of the IoT environment.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 684
Author(s):  
Jiateng Song ◽  
Hongbin Wang ◽  
Mingxing Du ◽  
Lei Peng ◽  
Shuai Zhang ◽  
...  

Non-intrusive load monitoring (NILM) is an important research direction and development goal on the distribution side of smart grid, which can significantly improve the timeliness of demand side response and users’ awareness of load. Due to rapid development, deep learning becomes an effective way to optimize NILM. In this paper, we propose a novel load identification method based on long short term memory (LSTM) on deep learning. Sequence-to-point (seq2point) learning is introduced into LSTM. The innovative combination of the LSTM and the seq2point brings their respective advantages together, so that the proposed model can accurately identify the load in process of time series data. In this paper, we proved the feature of reducing identification error in the experimental data, from three datasets, UK-DALE dataset, REDD dataset, and REFIT dataset. In terms of mean absolute error (MAE), the three datasets have increased by 15%, 14%, and 18% respectively; in terms of normalized signal aggregate error (SAE), the three datasets have increased by 21%, 24%, and 30% respectively. Compared with the existing models, the proposed model has better accuracy and generalization in identifying three open source datasets.


2021 ◽  
Vol 7 ◽  
pp. e645
Author(s):  
Ramish Jamil ◽  
Imran Ashraf ◽  
Furqan Rustam ◽  
Eysha Saad ◽  
Arif Mehmood ◽  
...  

Sarcasm emerges as a common phenomenon across social networking sites because people express their negative thoughts, hatred and opinions using positive vocabulary which makes it a challenging task to detect sarcasm. Although various studies have investigated the sarcasm detection on baseline datasets, this work is the first to detect sarcasm from a multi-domain dataset that is constructed by combining Twitter and News Headlines datasets. This study proposes a hybrid approach where the convolutional neural networks (CNN) are used for feature extraction while the long short-term memory (LSTM) is trained and tested on those features. For performance analysis, several machine learning algorithms such as random forest, support vector classifier, extra tree classifier and decision tree are used. The performance of both the proposed model and machine learning algorithms is analyzed using the term frequency-inverse document frequency, bag of words approach, and global vectors for word representations. Experimental results indicate that the proposed model surpasses the performance of the traditional machine learning algorithms with an accuracy of 91.60%. Several state-of-the-art approaches for sarcasm detection are compared with the proposed model and results suggest that the proposed model outperforms these approaches concerning the precision, recall and F1 scores. The proposed model is accurate, robust, and performs sarcasm detection on a multi-domain dataset.


2019 ◽  
Vol 20 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Zahra Bokaee Nezhad ◽  
Mohammad Ali Deihimi

With increasing members in social media sites today, people tend to share their views about everything online. It is a convenient way to convey their messages to end users on a specific subject. Sentiment Analysis is a subfield of Natural Language Processing (NLP) that refers to the identification of users’ opinions toward specific topics. It is used in several fields such as marketing, customer services, etc. However, limited works have been done on Persian Sentiment Analysis. On the other hand, deep learning has recently become popular because of its successful role in several Natural Language Processing tasks. The objective of this paper is to propose a novel hybrid deep learning architecture for Persian Sentiment Analysis. According to the proposed model, local features are extracted by Convolutional Neural Networks (CNN) and long-term dependencies are learned by Long Short Term Memory (LSTM). Therefore, the model can harness both CNN's and LSTM's abilities. Furthermore, Word2vec is used for word representation as an unsupervised learning step. To the best of our knowledge, this is the first attempt where a hybrid deep learning model is used for Persian Sentiment Analysis. We evaluate the model on a Persian dataset that is introduced in this study. The experimental results show the effectiveness of the proposed model with an accuracy of 85%. ABSTRAK: Hari ini dengan ahli yang semakin meningkat di laman media sosial, orang cenderung untuk berkongsi pandangan mereka tentang segala-galanya dalam talian. Ini adalah cara mudah untuk menyampaikan mesej mereka kepada pengguna akhir mengenai subjek tertentu. Analisis Sentimen adalah subfield Pemprosesan Bahasa Semula Jadi yang merujuk kepada pengenalan pendapat pengguna ke arah topik tertentu. Ia digunakan dalam beberapa bidang seperti pemasaran, perkhidmatan pelanggan, dan sebagainya. Walau bagaimanapun, kerja-kerja terhad telah dilakukan ke atas Analisis Sentimen Parsi. Sebaliknya, pembelajaran mendalam baru menjadi popular kerana peranannya yang berjaya dalam beberapa tugas Pemprosesan Bahasa Asli (NLP). Objektif makalah ini adalah mencadangkan senibina pembelajaran hibrid yang baru dalam Analisis Sentimen Parsi. Menurut model yang dicadangkan, ciri-ciri tempatan ditangkap oleh Rangkaian Neural Convolutional (CNN) dan ketergantungan jangka panjang dipelajari oleh Long Short Term Memory (LSTM). Oleh itu, model boleh memanfaatkan kebolehan CNN dan LSTM. Selain itu, Word2vec digunakan untuk perwakilan perkataan sebagai langkah pembelajaran tanpa pengawasan. Untuk pengetahuan yang terbaik, ini adalah percubaan pertama di mana model pembelajaran mendalam hibrid digunakan untuk Analisis Sentimen Persia. Kami menilai model pada dataset Persia yang memperkenalkan dalam kajian ini. Keputusan eksperimen menunjukkan keberkesanan model yang dicadangkan dengan ketepatan 85%.


Author(s):  
Richa Sharma ◽  
Sudha Morwal ◽  
Basant Agarwal

This article presents a neural network-based approach to develop named entity recognition for Hindi text. In this paper, the authors propose a deep learning architecture based on convolutional neural network (CNN) and bi-directional long short-term memory (Bi-LSTM) neural network. Skip-gram approach of word2vec model is used in the proposed model to generate word vectors. In this research work, several deep learning models have been developed and evaluated as baseline systems such as recurrent neural network (RNN), long short-term memory (LSTM), Bi-LSTM. Furthermore, these baseline systems are promoted to a proposed model with the integration of CNN and conditional random field (CRF) layers. After a comparative analysis of results, it is verified that the performance of the proposed model (i.e., Bi-LSTM-CNN-CRF) is impressive. The proposed system achieves 61% precision, 56% recall, and 58% F-measure.


2021 ◽  
Vol 11 (19) ◽  
pp. 8995
Author(s):  
Eunju Lee ◽  
Dohee Kim ◽  
Hyerim Bae

The purpose of this study is to improve the prediction of container volumes in Busan ports by applying external variables and time-series data decomposition methods to deep learning prediction models. Previous studies on container volume forecasting were based on traditional statistical methodologies, such as ARIMA, SARIMA, and regression. However, these methods do not explain the complexity and variability of data caused by changes in the external environment, such as the global financial crisis and economic fluctuations. Deep learning can explore the inherent patterns of data and analyze the characteristics (time series, external environmental variables, and outliers); hence, the accuracy of deep learning-based volume prediction models is better than that of traditional models. However, this does not include the study of overall trends (upward, steady, or downward). In this study, a novel deep learning prediction model is proposed that combines prediction and trend identification of container volume. The proposed model explores external variables that are related to container volume, combining port volume time-series decomposition with external variables and deep learning-based multivariate long short-term memory (LSTM) prediction. The results indicate that the proposed model performs better than the traditional LSTM model and follows the trend simultaneously.


Sign in / Sign up

Export Citation Format

Share Document