NANOMECHANICS OF INDIVIDUAL ZINC OXIDE NANOBELTS MEASURED BY IN SITU TRANSMISSION ELECTRON MICROSCOPY

2006 ◽  
Vol 05 (06) ◽  
pp. 951-958 ◽  
Author(s):  
XUEDONG BAI ◽  
EN GE WANG ◽  
ZHONG LIN WANG

Zinc oxide nanobelts, grown by a solid–vapor phase thermal sublimation process, are stimulating extensive interest because of their semiconducting and piezoelectric properties, diverse functionalities and chemical stability. For nanomanipulation and nanomeasurement of an individual ZnO nanobelts, in situ transmission electron microscopy (TEM) technique is a unique approach. In this paper, mechanical resonance of a single ZnO nanobelt, induced by an alternative electric field, was studied by in situ TEM. Due to the rectangular cross-section of the nanobelt, two fundamental resonance modes have been observed in corresponding to two orthogonal transverse vibration directions, showing the versatile applications of nanobelts as nanocantilevers and nanoresonators. The bending modulus of the ZnO nanobelts was measured to be ~ 52 GPa and the damping time constant of the resonance in vacuum of 10–8 Torr was ~ 1.2 ms. The ZnO nanobelts are promising in potential applications as nanocantilevers, nanoresonators and nanoactuators.

CORROSION ◽  
10.5006/3457 ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 464-475 ◽  
Author(s):  
Shravan K. Kairy ◽  
Nick Birbilis

The role of magnesium silicide (Mg2Si) and silicon (Si) particles in the localized corrosion of aluminum (Al) alloys was investigated herein. Sub-micrometer-sized Mg2Si and Si particles were grown in the Al matrix of Al-Mg-Si and Al-Si alloys, respectively, and characterized by transmission electron microscopy (TEM). A quasi in situ TEM technique was used to study an identical location containing Mg2Si or Si particle in the Al matrix, prior to and following a period of immersion in 0.1 M NaCl at pH 6, 2, and 12. At pH 6 and 2, Mg2Si was initially “anodic,” preferentially dealloying via selective dissolution of Mg, resulting in the development of SiO-rich remnants that are electrochemically inert. The SiO-rich remnants at pH 2 physically detached from the Al matrix. Silicon particles were electrochemically inert at pH 6, while “cathodic” at pH 2, dissolving the Al matrix at their periphery. It was observed that copper (Cu) was redeposited on Si particles at pH 2. At pH 12, Mg2Si and Si were “cathodic” to the Al matrix. This study clarifies, and provides new insights into, the characteristics of Al alloy physical manifestation of corrosion associated with Mg2Si and Si at the nanoscale.


2005 ◽  
Vol 907 ◽  
Author(s):  
Amanda K Petford-Long ◽  
Thomas Bromwich ◽  
Amit Kohn ◽  
Victoria Jackson ◽  
Takeshi Kasama ◽  
...  

AbstractOne of the most widely studied types of magnetic nanostructure is that used in devices based on the giant magnetoresistance (GMR) or tunnel magnetoresistance (TMR) phenomena. In order to understand the behaviour of these materials it is important to be able to follow their magnetisation reversal mechanism, and one of the techniques enabling micromagnetic studies at the sub-micron scale is transmission electron microscopy. Two techniques can be used: Lorentz transmission electron microscopy and off-axis electron holography, both of which allow the magnetic domain structure of a ferromagnetic material to be investigated dynamically in real-time with a resolution of a few nanometres. These techniques have been used in combination with in situ magnetizing experiments, to carry out qualitative and quantitative studies of magnetization reversal in a range of materials including spin-tunnel junctions, patterned thin film elements and magnetic antidot arrays. Quantitative analysis of the Lorentz TEM data has been carried out using the transport of intensity equation (TIE) approach.


1997 ◽  
Vol 480 ◽  
Author(s):  
K. B. Belay ◽  
M. C. Ridgway ◽  
D. J. Llewellyn

AbstractIn-situ transmission electron microscopy (TEM) has been used to characterize the solidphase epitaxial growth of amorphized GaAs at a temperature of 260°C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs (3xI) mm rectangular slabs were cut then glued face-to-face to a size of (6x3) mm stack by maintaining the TEM region at the center. This stack was subsequently polished to a thickness of ~ 200 ýtm. A 3 mm disc was then cut from it using a Gatan ultrasonic cutter. The disc was polished and dimpled on both sides to a thickness of ~15 mimT.h is was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20°C from that of the heated holder. The influence of electron-irradiated was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of “thin-foil effect” was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be eliminated by the appropriate choice of sample preparation procedures.


2010 ◽  
Vol 146-147 ◽  
pp. 1365-1368 ◽  
Author(s):  
Li Mei Cha ◽  
Helmut Clemens ◽  
Gerhard Dehm ◽  
Zao Li Zhang

In-situ heating transmission electron microscopy (TEM) was employed to investigate the initial stage of lamellae formation in a high Nb containing γ-TiAl based alloy. A Ti-45Al-7.5Nb alloy (at %), which was heat treated and quenched in a non-equilibrium state such that the matrix consists of ordered a2 grains, was annealed inside a TEM up to 750 °C. The in-situ TEM study reveals that g laths precipitate in the a2 matrix at ~ 750 °C possessing the classical Blackburn orientation relationship, i.e. (0001)a2 // (111)g and [11-20]a2 // <110]g. The microstructure of the in-situ TEM experiment is compared to results from ex-situ heating and subsequent TEM studies.


2000 ◽  
Vol 6 (S2) ◽  
pp. 64-65
Author(s):  
Z.L. Wang ◽  
R.P. Gao ◽  
Z.G. Bai ◽  
Z.R. Dai ◽  
P. Poncharal ◽  
...  

Characterizing the physical properties of individual nanostructures is rather challenging because of the difficulty in manipulating the objects of sizes from nanometer to micrometer. Most of the nanomeasurements have been carried using STM and AFM. In this presentation, we demonstrate that transmission electron microscopy can be a powerful tool for quantitative measurements the mechanical, electrical and thermodynamic properties of a single nanostructure, such as a carbon nanotube or a nanoparticle.Using a customer-built specimen holder, in-situ measurements on the mechanical properties of carbon nanotubes has been carried out using the resonance phenomenon induced by an externally applied alternating voltage [1]. If an oscillating voltage is applied on the nanotube with tunable frequency, resonance can be induced (Fig. 1). The bending modulus is calculated from the resonance frequency. The bending modulus is as high as 1.2 TPa (as strong as diamond) for nanotubes with diameters smaller than 8 nm, and it drops to as low as 0.2 TPa for those with diameters larger than 30 nm.


2020 ◽  
Vol 56 (5) ◽  
pp. 4006-4012
Author(s):  
Antonio Mulone ◽  
Inga Ennen ◽  
Andreas Hütten ◽  
Uta Klement

AbstractThis paper describes the crystallization which occurs upon annealing of an amorphous Fe-24at.%W coatings, electrodeposited from a glycolate-citrate plating bath. A combination of Differential Scanning Calorimetry and in-situ Transmission Electron Microscopy annealing is used to study the onset of crystallization of the amorphous coating. The in-situ TEM analyses reveal the formation of first crystallites after annealing at 400 °C for 30 min. Upon a temperature increase to 500–600 °C, the crystallites develop into Fe-rich nanocrystals with ~ 40 nm grain size. The nanocrystals are dispersed in the remaining amorphous Fe-W matrix, which results in the formation of a mixed nanocrystalline-amorphous structure. The observed crystallization can be held responsible for the increase in the hardness obtained upon annealing of Fe-24at.%W coatings. In fact, the hardness of the as-deposited material increases from 11 to 13 GPa after annealing at 400 °C, and it reaches the maximum value of 16.5 GPa after annealing at 600 °C.


Sign in / Sign up

Export Citation Format

Share Document