Assessing the performance of commonly used DFT functionals in studying the chemistry of frustrated Lewis pairs

2014 ◽  
Vol 13 (01) ◽  
pp. 1350074 ◽  
Author(s):  
Fang Huang ◽  
Jinliang Jiang ◽  
Mingwei Wen ◽  
Zhi-Xiang Wang

The benchmark study has assessed the performance of 18 density functional theory (DFT) functionals, including GGAs, hybrid-GGAs, meta-GGAs, and hybrid meta-GGAs, in predicting bonding strength, barrier height and structure for systems involving Lewis acids and bases. Three databases were built for the study, including 15 bonding enthalpies of dative bonds (DBH15), 10 reaction barriers (BH10) and 10 X-ray structures (XCS10). Wavefunction-based ab initio calculations were also carried out for comparisons. The benchmark data were computed at the CCSD(T)/BSI//MP2/BSI(BSI=aug-cc-pVTZ) level. The 6-311++G(d,p)(BSII) and 6-31G(d,p)(BSIII) basis sets were employed in DFT calculations. Generally, M06-2X/BSII and M05-2X/BSII outperform the other tested DFT methods. M05-2X/BSIII and M06-2X/BSIII are less accurate than M05-2X/BSII and M06-2X/BSII (or M05-2X/BSII//M05-2X/BSIII and M06-2X/BSII//M06-2X/BSIII), suggesting that large basis sets (e.g. BSII) are necessary to improve energetics. SCS-MP2 is less accurate than MP2, consistently overestimating bonding enthalpies and reaction barriers. Moreover, six DFT functionals (M05-2X, M06-2X, B3LYP, ωB97X-D, BMK and B97-D) were examined by comparing with the experimental bonding enthalpies of eighteen donor–acceptor complexes, which indicate that M05-2X and M06-2X are still better than others. Nevertheless, M05-2X and M06-2X significantly overestimate or underestimate the bonding enthalpies of F-substituted complexes, implying the necessity of improving the two functionals for describing fluorides. Using the six basis sets (BSI, cc-pVTZ, aug-cc-pVDZ, cc-pVDZ, TZVP and BSII) and DBH15 and BH10 databases, the influence of the basis sets on the performance of M06-2X functional was examined, which reveals that BSII is the most suitable basis set for the functional.

2013 ◽  
Vol 12 (04) ◽  
pp. 1350022 ◽  
Author(s):  
MEHDI D. ESRAFILI ◽  
NAFISEH MOHAMMADIRAD

A systematic theoretical study on various maleic acid (MA) clusters has been carried out employing density functional theory (DFT) methods. The performance of two different functionals namely B3LYP and M06 in the prediction of geometries, 17 O and 2 H nuclei quadrupole coupling constant (CQ) values of the MA clusters has been assessed comparing the results to those experimental data. For DFT calculations, several basis sets have been used, including the recently developed Jensen's polarization-consistent basis set families, pcJ-n and pcS-n (n = 0,1,2,3). Calculations at the basis set limit indicate that the value of CQ(2 H ) in monomer MA, changes by 0.01–0.04 kHz for each of the final two basis set increments, and seems reasonable to conclusion that the pcJ-3 result is within a few kHz of the basis set limit. Convergence with respect to basis set size was found to be very good, and the pcJ-1 and pcS-1 basis sets provided a good compromise between the basis set limit and computational expense. In most cases, the differences between B3LYP and M06 results for a given basis set are in a range of 1–2%. On the other hand, no systematic changes in the CQ(17 O ) or CQ(2 H ) were found for basis sets larger than double-ζ. Thus, the usual assumption that double-ζ basis set (pcJ-1 and pcS-1) results in the acceptable CQ values, seems to be valid in the case of 17 O and 2 H nuclei.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


2001 ◽  
Vol 56 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Hans Bock ◽  
Sven Holl ◽  
Volker Krenzel

Abstract The structures of tri-and tetraiodo-substituted carbon compounds are determined either expe­rimentally by X-Ray Structure Analysis or, because crystallization of tetraiodothiophene could not be achieved, approximated by Density Functional Theory optimization of structural data from a donor/acceptor complex. The structures show noteworthy details such as a second po­lymorph of tetraiodoethene crystallized by sublimation or herringbone crystal packing patterns of tetraiodopyrrole derivatives. All molecular geometries are discussed and compared based on relativistic density functional theory calculations with 6 -31G* basis sets including iodine pseudopotentials. They reproduce even finer structural details due to van der Waals repulsion of the bulky iodo substituents. Natural Bond Orbital (NBO) charge distributions suggest positive partial charges at all iodine centers with the strongest polarization Cδ㊀ → Iδ㊉ in HCI3, which contains well over 97% iodine.


2018 ◽  
Vol 3 (7) ◽  
Author(s):  
Ayşegül Gümüş ◽  
Selçuk Gümüş

Abstract 2,3-Dicyanopyrazine based acceptor was combined with a series of well studied donors to obtain donor-acceptor type potential thermally activated delayed fluorescence emitters. Their structural and electronic properties were computed theoretically at the level of density functional theory and time dependent density functional theory with the application of two different hybrid functionals and various basis sets. Almost all of the designed structures were computed to have the potential of being TADF compounds since they possess very narrow singlet-triplet gaps. Indeed, acridine-pyrazine (9) derivative was calculated to be the best candidate for the purpose among them.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Kenneth Irving ◽  
Martina Kieninger ◽  
Oscar N. Ventura

The performance of a group of density functional methods of progressive complexity for the description of the ClO bond in a series of chlorine oxides was investigated. The simplest ClO radical species and the two isomeric structures XClO/ClOX for each X = H, Cl, and O were studied using the PW91, TPSS, B3LYP, PBE0, M06, M06-2X, BMK, and B2PLYP functionals. Geometry optimizations and reaction enthalpies and enthalpies of formation for each species were calculated using Pople basis sets and the (aug)-cc-pVnZ Dunning sets, with n = D, T, Q, 5, and 6. For the calculation of enthalpies of formation, atomization and isodesmic reactions were employed. Both the precision of the methods with respect to the increase of the basis sets, as well as their accuracy, were gauged by comparing the results with the more accurate CCSD(T) calculations, performed using the same basis sets as for the DFT methods. The results obtained employing composite chemical methods (G4, CBS-QB3, and W1BD) were also used for the comparisons, as well as the experimental results when they are available. The results obtained show that error compensation is the key for successful description of molecular properties (geometries and energies) by carefully selecting the method and basis sets. In general, expansion of the one-electron basis set to the limit of completeness does not improve results at the DFT level, but just the opposite. The enthalpies of formation calculated at the CCSD(T)/aug-cc-pV6Z for the species considered are generally in agreement with experimental determinations and the most accurate theoretical values. Different sources of error in the calculations are discussed in detail.


2009 ◽  
Vol 87 (7) ◽  
pp. 974-983 ◽  
Author(s):  
Sarah R. Whittleton ◽  
Russell J. Boyd ◽  
T. Bruce Grindley

Density functional theory and second-order Møller–Plesset perturbation theory with effective core potentials have been used to calculate homolytic bond-dissociation enthalpies, D(Sn–X), of organotin compounds, and their performance has been assessed by comparison with available experimental bond enthalpies. The SDB-aug-cc-pVTZ basis set with its effective core potential was used to calculate the D(Sn–X) of a series of trimethyltin(IV) species, Me3Sn–X, where X = H, CH3, CH2CH3, NH2, OH, Cl, and F. This is the most comprehensive report to date of homolytic Sn–X bond-dissociation enthalpies (BDEs). Effective core potentials are then used to calculate thermodynamic parameters including donor–acceptor bond enthalpies, [Formula: see text], for a series of tin-ligand complexes, L2SnX4 (X = Br or Cl, L = py, dmf, or dmtf), which are compared with previous experimental and nonrelativistic computational results. Based on computational efficiency and accuracy, it is concluded that effective core potentials are appropriate computational methods to examine bonding in organotin systems.


2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


2011 ◽  
Vol 8 (s1) ◽  
pp. S195-S202
Author(s):  
Y. Belhocine ◽  
M. Bencharif

The structure and spectroscopic properties of polycyclic aromatic ligands of 2,3,6,7,10,11-hexakis (alkylthio) triphenylene (alkyl: methyl, ethyl, and isopropyl; corresponding to the abbreviations of the molecules: HMTT, HETT and HiPTT) were studied using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods with triple-zeta valence polarization (TZVP) basis set. It was shown that the type of functional theory used, Becke-Perdew (BP) and Leeuwen-Baerends (LB94) implemented in Amsterdam Density functional (ADF) program package, does not have essential influence on the geometry of studied compounds in both ground and excited states. However, significant differences were obtained for the band gap values with relativistic effects of the zero order regular approximation scalar corrections (ZORA) and LB94 functional seems to reproduce better the experimental optical band gap of these systems.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5058
Author(s):  
Maciej Spiegel ◽  
Andrzej Gamian ◽  
Zbigniew Sroka

Polyphenolic compounds are now widely studied using computational chemistry approaches, the most popular of which is Density Functional Theory. To ease this process, it is critical to identify the optimal level of theory in terms of both accuracy and resource usage—a challenge we tackle in this study. Eleven DFT functionals with varied Hartree–Fock exchange values, both global and range-separated hybrids, were combined with 14 differently augmented basis sets to calculate the reactivity indices of caffeic acid, a phenolic acid representative, and compare them to experimental data or a high-level of theory outcome. Aside from the main course, a validation of the widely used Janak’s theorem in the establishment of vertical ionization potential and vertical electron affinity was evaluated. To investigate what influences the values of the properties under consideration, linear regression models were developed and thoroughly discussed. The results were utilized to compute the scores, which let us determine the best and worst combinations and make broad suggestions on the final option. The study demonstrates that M06–2X/6–311G(d,p) is the best fit for such research, and, curiously, it is not necessarily essential to include a diffuse function to produce satisfactory results.


2020 ◽  
Author(s):  
Oscar Ventura

A simple version of a composite scheme is described, based on a combination of density functional geometry and frequencies evaluation, valence energies obtained using the CCSD(T)-f12 method extrapolated to the complete basis set limit, and core-valence correlation corrections employing the MP2 method. The procedure was applied to the 38 reactions in Truhlar’s HTBH38/08 and NHTBH38/08 databases. Mean unsigned deviation (MUD) for the complete set of 68 independent barriers is 0.43 kcal mol-1, compared to 1.37 kcal/mol for G4 and 1.69 kcal/mol for the dispersioncorrected M06-2X method. Its accuracy is also better that that of other calculations using composite methods of similar cost. The MUD of the new scheme on the barriers in the DBH24/08 subset (12 out of the 38 reactions in both other sets) is 0.31 kcal mol-1, better than that obtained at the expensive CCSD(T,full)/aug-cc-pCV(T+d)Z level (0.46 kcal mol-1) and comparable to the most exact (and costly) Wn calculations (MUD=0.14 kcal mol-1). The maximum unsigned deviation (MaxUD) of the new method for all the reactions studied is 1.71 kcal/mol. G4 and M06-2X, on the other side, exhibit MaxUDs of 6.7 and 8.4 kcal/mol respectively


Sign in / Sign up

Export Citation Format

Share Document