Computational Assignment of Protein Backbone NMR Peaks by Efficient Bounding and Filtering

2003 ◽  
Vol 01 (02) ◽  
pp. 387-409 ◽  
Author(s):  
Guohui Lin ◽  
Dong Xu ◽  
Zhi-Zhong Chen ◽  
Tao Jiang ◽  
Jianjun Wen ◽  
...  

NMR resonance assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents a new computational method based on the combination of a suite of algorithms for automating the assignment process, particularly the process of backbone resonance peak assignment. We formulate the assignment problem as a constrained weighted bipartite matching problem. While the problem, in the most general situation, is NP-hard, we present an efficient solution based on a branch-and-bound algorithm with effective bounding techniques using two recently introduced approximation algorithms. We also devise a greedy filtering algorithm for reducing the search space. Our experimental results on 70 instances of (pseudo) real NMR data derived from 14 proteins demonstrate that the new solution runs much faster than a recently introduced (exhaustive) two-layer algorithm and recovers more correct peak assignments than the two-layer algorithm. Our result demonstrates that integrating different algorithms can achieve a good tradeoff between backbone assignment accuracy and computation time.

2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Daniel Vert ◽  
Renaud Sirdey ◽  
Stéphane Louise

AbstractThis paper experimentally investigates the behavior of analog quantum computers as commercialized by D-Wave when confronted to instances of the maximum cardinality matching problem which is specifically designed to be hard to solve by means of simulated annealing. We benchmark a D-Wave “Washington” (2X) with 1098 operational qubits on various sizes of such instances and observe that for all but the most trivially small of these it fails to obtain an optimal solution. Thus, our results suggest that quantum annealing, at least as implemented in a D-Wave device, falls in the same pitfalls as simulated annealing and hence provides additional evidences suggesting that there exist polynomial-time problems that such a machine cannot solve efficiently to optimality. Additionally, we investigate the extent to which the qubits interconnection topologies explains these latter experimental results. In particular, we provide evidences that the sparsity of these topologies which, as such, lead to QUBO problems of artificially inflated sizes can partly explain the aforementioned disappointing observations. Therefore, this paper hints that denser interconnection topologies are necessary to unleash the potential of the quantum annealing approach.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262499
Author(s):  
Negin Alisoltani ◽  
Mostafa Ameli ◽  
Mahdi Zargayouna ◽  
Ludovic Leclercq

Real-time ride-sharing has become popular in recent years. However, the underlying optimization problem for this service is highly complex. One of the most critical challenges when solving the problem is solution quality and computation time, especially in large-scale problems where the number of received requests is huge. In this paper, we rely on an exact solving method to ensure the quality of the solution, while using AI-based techniques to limit the number of requests that we feed to the solver. More precisely, we propose a clustering method based on a new shareability function to put the most shareable trips inside separate clusters. Previous studies only consider Spatio-temporal dependencies to do clustering on the mobility service requests, which is not efficient in finding the shareable trips. Here, we define the shareability function to consider all the different sharing states for each pair of trips. Each cluster is then managed with a proposed heuristic framework in order to solve the matching problem inside each cluster. As the method favors sharing, we present the number of sharing constraints to allow the service to choose the number of shared trips. To validate our proposal, we employ the proposed method on the network of Lyon city in France, with half-million requests in the morning peak from 6 to 10 AM. The results demonstrate that the algorithm can provide high-quality solutions in a short time for large-scale problems. The proposed clustering method can also be used for different mobility service problems such as car-sharing, bike-sharing, etc.


2020 ◽  
Author(s):  
Sadanandam Namsani ◽  
Debabrata Pramanik ◽  
Mohd Aamir Khan ◽  
Sudip Roy ◽  
Jayant Singh

<div><div><div><p>Here we report new chemical entities that are highly specific in binding towards the 3-chymotrypsin- like cysteine protease (3CLpro) protein present in the novel SARS-CoV2 virus. The viral 3CLpro</p><p>protein controls coronavirus replication. Therefore, 3CLpro is identified as a target for drug molecules. We have implemented an enhanced sampling method in combination with molecular dynamics and docking to bring down the computational screening search space to four molecules that could be synthesised and tested against COVID-19. Our computational method is much more robust than any other method available for drug screening e.g., docking, because of sampling of the free energy surface of the binding site of the protein (including the ligand) and use of explicit solvent. We have considered all possible interactions between all the atoms present in the protein, ligands, and water. Using high performance computing with graphical processing units we are able to perform large number of simulations within a month's time and converge to 4 most strongly bound ligands (by free energy and other scores) from a set of 17 ligands with lower docking scores. Based on our results and analysis, we claim with high confidence, that we have identified four potential ligands. Out of those, one particular ligand is the most promising candidate, based on free energy data, for further synthesis and testing against SARS-CoV-2 and might be effective for the cure of COVID-19.</p></div></div></div>


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1773
Author(s):  
Bahareh Behkamal ◽  
Mahmoud Naghibzadeh ◽  
Mohammad Reza Saberi ◽  
Zeinab Amiri Tehranizadeh ◽  
Andrea Pagnani ◽  
...  

Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant role in protein structure determination in recent years. Compared to the traditional methods of X-ray crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4–10 Å) for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly determine the structure of proteins at atomic level resolutions, or even at their amino acid residue backbones. At such a resolution, only the position and orientation of secondary structure elements (SSEs) such as α-helices and β-sheets are observable. Consequently, finding the mapping of the secondary structures of the modeled structure (SSEs-A) to the cryo-EM map (SSEs-C) is one of the primary concerns in cryo-EM modeling. To address this issue, this study proposes a novel automatic computational method to identify SSEs correspondence in three-dimensional (3D) space. Initially, through a modeling of the target sequence with the aid of extracting highly reliable features from a generated 3D model and map, the SSEs matching problem is formulated as a 3D vector matching problem. Afterward, the 3D vector matching problem is transformed into a 3D graph matching problem. Finally, a similarity-based voting algorithm combined with the principle of least conflict (PLC) concept is developed to obtain the SSEs correspondence. To evaluate the accuracy of the method, a testing set of 25 experimental and simulated maps with a maximum of 65 SSEs is selected. Comparative studies are also conducted to demonstrate the superiority of the proposed method over some state-of-the-art techniques. The results demonstrate that the method is efficient, robust, and works well in the presence of errors in the predicted secondary structures of the cryo-EM images.


Author(s):  
Victer Paul ◽  
Ganeshkumar C ◽  
Jayakumar L

Genetic algorithms (GAs) are a population-based meta-heuristic global optimization technique for dealing with complex problems with a very large search space. The population initialization is a crucial task in GAs because it plays a vital role in the convergence speed, problem search space exploration, and also the quality of the final optimal solution. Though the importance of deciding problem-specific population initialization in GA is widely recognized, it is hardly addressed in the literature. In this article, different population seeding techniques for permutation-coded genetic algorithms such as random, nearest neighbor (NN), gene bank (GB), sorted population (SP), and selective initialization (SI), along with three newly proposed ordered-distance-vector-based initialization techniques have been extensively studied. The ability of each population seeding technique has been examined in terms of a set of performance criteria, such as computation time, convergence rate, error rate, average convergence, convergence diversity, nearest-neighbor ratio, average distinct solutions and distribution of individuals. One of the famous combinatorial hard problems of the traveling salesman problem (TSP) is being chosen as the testbed and the experiments are performed on large-sized benchmark TSP instances obtained from standard TSPLIB. The scope of the experiments in this article is limited to the initialization phase of the GA and this restricted scope helps to assess the performance of the population seeding techniques in their intended phase alone. The experimentation analyses are carried out using statistical tools to claim the unique performance characteristic of each population seeding techniques and best performing techniques are identified based on the assessment criteria defined and the nature of the application.


Author(s):  
Arslan Ali Syed ◽  
Irina Gaponova ◽  
Klaus Bogenberger

The majority of transportation problems include optimizing some sort of cost function. These optimization problems are often NP-hard and have an exponential increase in computation time with the increase in the model size. The problem of matching vehicles to passenger requests in ride hailing (RH) contexts typically falls into this category.Metaheuristics are often utilized for such problems with the aim of finding a global optimal solution. However, such algorithms usually include lots of parameters that need to be tuned to obtain a good performance. Typically multiple simulations are run on diverse small size problems and the parameters values that perform the best on average are chosen for subsequent larger simulations.In contrast to the above approach, we propose training a neural network to predict the parameter values that work the best for an instance of the given problem. We show that various features, based on the problem instance and shareability graph statistics, can be used to predict the solution quality of a matching problem in RH services. Consequently, the values corresponding to the best predicted solution can be selected for the actual problem. We study the effectiveness of above described approach for the static assignment of vehicles to passengers in RH services. We utilized the DriveNow data from Bavarian Motor Works (BMW) for generating passenger requests inside Munich, and for the metaheuristic, we used a large neighborhood search (LNS) algorithm combined with a shareability graph.


2015 ◽  
Vol 764-765 ◽  
pp. 1390-1394
Author(s):  
Ruey Maw Chen ◽  
Frode Eika Sandnes

The permutation flow shop problem (PFSP) is an NP-hard permutation sequencing scheduling problem, many meta-heuristics based schemes have been proposed for finding near optimal solutions. A simple insertion simulated annealing (SISA) scheme consisting of two phases is proposed for solving PFSP. First, to reduce the complexity, a simple insertion local search is conducted for constructing the solution. Second, to ensure continuous exploration in the search space, two non-decreasing temperature control mechanisms named Heating SA and Steady SA are introduced in a simulated annealing (SA) procedure. The Heating SA increases the exploration search ability and the Steady SA enhances the exploitation search ability. The most important feature of SISA is its simple implementation and low computation time complexity. Experimental results are compared with other state-of-the-art algorithms and reveal that SISA is able to efficiently yield good permutation schedule.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Alireza Ataei

Katsikis et al. presented a computational method in order to calculate the Moore-Penrose inverse of an arbitrary matrix (including singular and rectangular) (2011). In this paper, an improved version of this method is presented for computing the pseudo inverse of an m×n real matrix A with rank r>0. Numerical experiments show that the resulting pseudoinverse matrix is reasonably accurate and its computation time is significantly less than that obtained by Katsikis et al.


Sign in / Sign up

Export Citation Format

Share Document