Comparative study of quantum discord and geometric discord for generic bipartite states

2014 ◽  
Vol 12 (05) ◽  
pp. 1450027 ◽  
Author(s):  
Bao Liu ◽  
Zheng Hu ◽  
Xi-Wen Hou

The characterization of quantum discord (QD) and geometric discord (GD) has mostly concentrated on two-qubit states since the minimization in both discords is a daunting task for high-dimensional states. Numerical calculations of both discords are carried out for a generic bipartite state. When one-dimensional orthogonal projectors for a local measurement on n-dimensional Hilbert space are realized by the generators and the Euler angles of SU (n), the optimal measurements have a figure of merit that includes n(n - 1) Euler parameters. As an representative example, such projectors and two kinds of algorithms are used to estimate both discords for two-qutrit mixed states in recent literature. The generalized negativity as a measure of quantum entanglement is calculated for reference purposes. For those states with one parameter the discords and the negativity respectively display the nonlinear and the linear function of the parameter, with different turning points. However, they are positively correlated in the suitable ranges of the parameter for those states. The hierarchy of those quantities is discussed as well. Those shed new light on the understanding of QDs and quantum entanglement of mixed states in high-dimensions.

2013 ◽  
Vol 11 (08) ◽  
pp. 1350070 ◽  
Author(s):  
XIAO-JING LI ◽  
HUI-HUI JI ◽  
XI-WEN HOU

The characterization of quantum discord (QD) has been well understood only for two-qubit states and is little known for mixed states beyond qubits. In this work, thermal quantum discord is studied for a qutrit system in different magnetic fields, where classical correlation and entanglement negativity are calculated for comparison. It is shown that the discord is more robust against temperature than the negativity. For a suitable region of magnetic field and its direction, the discord is non-zero while the negativity is zero. When the system is at a lower temperature, these three quantities, however, display a similar behavior for the varied field and direction, and their discontinuities come from crossovers between different ground states in the system. Moreover, the inequality between the quantum and classical correlations depends upon the system parameters as well as the temperature. In particular, both correlations are equal at a suitable field, direction, and temperature. Remarkably, such an equality remains for a strong field in the antiparallel direction, while both correlations in two-qubit systems are identical for any antiparallel field and temperature. These are useful for quantum information and understanding quantum correlations in qutrit mixed states.


2011 ◽  
Vol 18 (02) ◽  
pp. 175-190 ◽  
Author(s):  
Aurelian Isar

In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initially separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and we show that in the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze time evolution of Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and we show that quantum discord decays asymptotically in time under the effect of thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of quantum system.


2015 ◽  
Vol 15 (13&14) ◽  
pp. 1223-1232
Author(s):  
Chengjun Wu ◽  
Bin Luo ◽  
Hong Guo

When Alice and Bob share two pairs of quantum correlated states, Alice can remotely prepare quantum entanglement and quantum discord in Bob’s side by measuring the parts in her side and telling Bob the measurement results by classical communication. For remote entanglement preparation, entanglement is necessary . We find that for some shared resources having the same amount of entanglement, when Bell measurement is used, the entanglement remotely prepared can be different, and more discord in the resources actually decreases the entanglement prepared. We also find that for some resources with more entanglement, the entanglement remotely prepared may be less. Therefore, we conclude that entanglement is a necessary resource but may not be the only resource responsible for the entanglement remotely prepared, and discord does not likely to assist this process. Also, for the preparation of discord, we find that some states with no entanglement could outperform entangled states.


2011 ◽  
Vol 19 (15) ◽  
pp. 14249 ◽  
Author(s):  
H. Kumano ◽  
K. Matsuda ◽  
S. Ekuni ◽  
H. Sasakura ◽  
I. Suemune

Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 62 ◽  
Author(s):  
Bruno Leggio ◽  
Anna Napoli ◽  
Hiromichi Nakazato ◽  
Antonino Messina

In the general framework of d 1 × d 2 mixed states, we derive an explicit bound for bipartite negative partial transpose (NPT) entanglement based on the mixedness characterization of the physical system. The derived result is very general, being based only on the assumption of finite dimensionality. In addition, it turns out to be of experimental interest since some purity-measuring protocols are known. Exploiting the bound in the particular case of thermal entanglement, a way to connect thermodynamic features to the monogamy of quantum correlations is suggested, and some recent results on the subject are given a physically clear explanation.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850022 ◽  
Author(s):  
Juju Hu ◽  
Shuqin Liu ◽  
Yinghua Ji

In order to measure the quantum correlation of a bipartite state quickly, an easy method is to construct a test matrix through the commutations among the blocks of its density matrix. Then, the Frobenius norm of the test matrix can be used to measure the quantum correlation. In this paper, we apply the measurement by Frobenius norm ([Formula: see text] to the dynamics evolution of the non-Markovian quantum system and compare it with the typical quantum discord ([Formula: see text] proposed by Ollivier and Zurek. The research results show that [Formula: see text] can indeed measure the quantum correlation of a bipartite state as same as [Formula: see text]. Further studies find that there are still differences between the two measurements: in some regions, when [Formula: see text] is zero, [Formula: see text] is not zero. It indicates that [Formula: see text] is more detailed than [Formula: see text] to measure quantum correlation of a bipartite state.


2019 ◽  
Vol 7 (1) ◽  
pp. 142-212 ◽  
Author(s):  
Yongge Tian

Abstract Sum and intersection of linear subspaces in a vector space over a field are fundamental operations in linear algebra. The purpose of this survey paper is to give a comprehensive approach to the sums and intersections of two linear subspaces and their orthogonal complements in the finite-dimensional complex vector space. We shall establish a variety of closed-form formulas for representing the direct sum decompositions of the m-dimensional complex column vector space 𝔺m with respect to a pair of given linear subspaces 𝒨 and 𝒩 and their operations, and use them to derive a huge amount of decomposition identities for matrix expressions composed by a pair of orthogonal projectors onto the linear subspaces. As applications, we give matrix representation for the orthogonal projectors onto the intersections of a pair of linear subspaces using various matrix decomposition identities and Moore–Penrose inverses; necessary and su˚cient conditions for two linear subspaces to be in generic position; characterization of the commutativity of a pair of orthogonal projectors; necessary and su˚cient conditions for equalities and inequalities for a pair of subspaces to hold; equalities and inequalities for norms of a pair of orthogonal projectors and their operations; as well as a collection of characterizations of EP-matrix.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345055 ◽  
Author(s):  
BEN-QIONG LIU ◽  
BIN SHAO ◽  
JUN-GANG LI ◽  
JIAN ZOU

Recent work has relatively comprehensively studied the quantum discord, which is supposed to account for all the nonclassical correlations present in a bipartite state (including entanglement), and provide computational speedup and quantum enhancement even in separable states. Firstly, we introduce several different indicators of nonclassical correlations, including their definitions and interpretations, mathematical properties, and the relationship between them. Secondly, we review two major topics of quantum discord. One is the remarkable behavior at quantum phase transitions. The pairwise quantum discord for nearest neighbors as well as distant spin pairs can perfectly signal the critical behavior of many physical models, even at finite temperatures. The other is quantum discord dynamics in open systems, especially for "system-spin environment" models. Quantum discord is more robust than entanglement against external perturbations. It can be created, greatly amplified or protected under certain conditions, and presents promising applications in quantum technologies such as quantum computers.


Sign in / Sign up

Export Citation Format

Share Document