In-Plane Free Vibration of Circular and Annular FG Disks

2019 ◽  
Vol 16 (06) ◽  
pp. 1840024 ◽  
Author(s):  
Y. Yang ◽  
K. P. Kou ◽  
C. C. Lam

The analysis of the in-plane free vibration of the circular and annular FG disks by a meshfree boundary-domain integral equation method is presented in this paper. The material properties of the disks are assumed to vary in the radial direction obeying an exponential law. Based on the two-dimensional linear elastic theory, the motion equations of the FG disks are derived by using the static fundamental solutions. Radial integration method as an efficient tool is adopted to treat the domain integrals which are raised due to the material inhomogeneous and inertial effects. The natural frequencies and associate mode shapes are calculated for the FG disks with combinations of free and clamped boundary conditions. Parametric studies are also conducted to study the effects of the material gradients, radius ratios and boundary conditions on the frequency of the FG disks.

2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


Author(s):  
J-S Wu ◽  
H-M Chou ◽  
D-W Chen

The dynamic characteristic of a uniform rectangular plate with four boundary conditions and carrying three kinds of multiple concentrated element (rigidly attached point masses, linear springs and elastically mounted point masses) was investigated. Firstly, the closed-form solutions for the natural frequencies and the corresponding normal mode shapes of a rectangular ‘bare’ (or ‘unconstrained’) plate (without any attachments) with the specified boundary conditions were determined analytically. Next, by using these natural frequencies and normal mode shapes incorporated with the expansion theory, the equation of motion of the ‘constrained’ plate (carrying the three kinds of multiple concentrated element) were derived. Finally, numerical methods were used to solve this equation of motion to give the natural frequencies and mode shapes of the ‘constrained’ plate. To confirm the reliability of previous free vibration analysis results, a finite element analysis was also conducted. It was found that the results obtained from the above-mentioned two approaches were in good agreement. Compared with the conventional finite element method (FEM), the approach employed in this paper has the advantages of saving computing time and achieving better accuracy, as can be seen from the existing literature.


Author(s):  
Tariq Z. Sinokrot ◽  
William C. Prescott ◽  
Maurizio Nembrini ◽  
Alessandro Toso

One of the challenging issues in the area of flexible multibody systems is the ability to properly account for the geometric nonlinear effects that are present in many applications. One common application where these effects play an important role is the dynamic modeling of twist beam axles in car suspensions. The purpose of this paper is to examine the accuracy of the results obtained using four common modeling methods used in such applications. The first method is based on a spline beam approach in which a long beam is represented using piecewise rigid bodies interconnected by beam force elements along a spline curve. The beam force elements use a simple linear beam theory in approximating the forces and torques along the beam central axis. The second approach uses the well known method of component mode synthesis that is based on the linear elastic theory. Using this method the deformation of the beam, which is modeled as one flexible body, is defined using its own vibration and static correction mode shapes. The equations of motion are, in this case, written in terms of the system’s generalized coordinates and modal participation factors. The linear elastic theory is used again in the third approach using a slightly different technique called the sub-structuring synthesis method. This method is based on dividing the flexible component into sub-structures, in which, the method of component mode synthesis is used to describe the deformation of each substructure. The fourth approach is based on a co-simulation technique that uses a Multibody System (MBS) solver and an external nonlinear Finite Element Analysis (FEA) solver. The flexibility of any body in the multibody system is, in this case, modeled in the external nonlinear FEA solver. The latter calculates the forces due to the nonlinear deformations of the flexible body in question and communicates that to the MBS solver at certain attachment points where the flexible body is attached to the rest of the multibody system. The displacements and velocities of these attachment points are calculated by the MBS solver and are communicated back to the nonlinear FEA solver to advance the simulation. The four approaches described are reviewed in this paper and a multibody system model of a car suspension system that includes a twist beam axle is presented. The model is examined four times, once using each approach. The numerical results obtained using the different methods are analyzed and compared.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950028 ◽  
Author(s):  
S. J. Singh ◽  
S. P. Harsha

In the present study, free vibration and buckling characteristics of a sandwich functionally graded material (FGM) plate resting on the Pasternak elastic foundation have been investigated. The formulation is based on non-polynomial higher-order shear deformation theory with inverse hyperbolic shape function. A new modified sigmoid law is presented to compute the effective material properties of sandwich FGM plate. The governing equilibrium equations have been derived using Hamilton’s principle. Non-dimensional frequencies and critical buckling loads are evaluated by considering different boundary conditions based on admissible functions satisfying the desired primary and secondary variables. Comprehensive parametric studies have been performed to analyze the influence of geometric configuration, volume fraction exponent, elastic medium parameter, and non-dimensional load parameter on the non-dimensional frequency and critical buckling load. These parametric studies have been done for various boundary conditions and different configurations of the sandwich plate. The computed results can be used as a benchmark for future comparison of sandwich S-FGM plates.


Author(s):  
A Hasani Baferani ◽  
A R Saidi ◽  
E Jomehzadeh

The aim of this article is to find an exact analytical solution for free vibration characteristics of thin functionally graded rectangular plates with different boundary conditions. The governing equations of motion are obtained based on the classical plate theory. Using an analytical method, three partial differential equations of motion are reformulated into two new decoupled equations. Based on the Navier solution, a closed-form solution is presented for natural frequencies of functionally graded simply supported rectangular plates. Then, considering Levy-type solution, natural frequencies of functionally graded plates are presented for various boundary conditions. Three mode shapes of a functionally graded rectangular plate are also presented for different boundary conditions. In addition, the effects of aspect ratio, thickness—length ratio, power law index, and boundary conditions on the vibration characteristics of functionally graded rectangular plates are discussed in details. Finally, it has been shown that the effects of in-plane displacements on natural frequencies of functionally graded plates under different boundary conditions have been studied.


Author(s):  
Gen Li ◽  
Yufeng Xing ◽  
Zekun Wang

For rectangular thick plates with non-Levy boundary conditions, it is important to explore analytical free vibration solutions because the classical inverse and semi-inverse exact solution methods are not applicable to this category of problems. This work is to develop an extended separation-of-variable (SOV) method to find closed-form analytical solutions for the free vibration of rectangular Mindlin plates with arbitrary homogeneous boundary conditions. In the extended SOV method, characteristic differential equations and boundary conditions in two directions are obtained by employing the Rayleigh principle and the assumption that the mode functions are in the SOV form, and two transcendental eigenvalue equations are achieved through boundary conditions. But these two eigenvalue equations cannot be solved simultaneously since there are two equations and only the natural frequency is the unknown variable. Considering this, the second assumption in this method is that the natural frequencies corresponding to two-direction mode functions are independent of each other in the mathematical sense, thus there are two unknowns in two transcendental eigenvalue equations, and the closed-form solutions for plates with arbitrary boundary conditions can be obtained non-iteratively. From the physical sense, the natural frequencies pertaining to different direction mode functions should be the same, and this conclusion is validated analytically and numerically. The present natural frequencies and mode shapes agree well with those obtained by other analytical and numerical methods. Especially, for the plates with at least two opposite sides simply supported, the present solutions are exact.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 67 ◽  
Author(s):  
M Arif Mat Norman ◽  
M Amiruddin Zainuddin ◽  
Jamaluddin Mahmud

This paper investigates the free vibration characteristics of laminate composite beam for various lamination schemes and under various boundary conditions. A beam model with the aspect ratio (length to thickness) of 25 to 150 made of carbon/ epoxy laminates under free vibration were constructed using a commercially available finite element software (ANSYS). The varied parameters are the lamination schemes (cross ply, angle ply and unidirectional ply) and boundary conditions (Clamp-Free (C-F), Clamp-Clamp (C-C), Clamp-Hanger (C-H), Free-Free (F-F) and Hanger-Hanger (H-H) ). For each case, finite element simulations were performed and the natural frequencies were determined. Mode shapes were also analyzed to observe the beam’s deformation behavior. Results showed that increasing aspect ratio will decrease natural frequencies for the first seven mode shapes. In terms of lamination scheme, the unidirectional ply produced the highest frequency (34.26 Hz), followed by cross ply (34.05 Hz) and angle ply (13.60 Hz) at the aspect ratio of 25. In terms of boundary conditions, the Hanger-Hanger boundary condition produced the highest natural frequency (2272.52  Hz) at the aspect ratio of 25, while Clamped-Free boundary condition produced the lowest frequency (2.28 Hz) at the aspect ratio of 150. In general, it can be concluded that the current study is useful and has contributed significant knowledge to better understand of effect of various fiber orientations and boundary conditions on the natural frequencies of laminated composite beam. 


Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir ◽  
Mustafa Zarghami Dehaghani

The current study aims to analyze the asymmetric free vibration behavior of shear deformable functionally graded magneto-electro-thermo-elastic circular plates. The plate’s displacements are described by employing the first-order shear deformation theory and based on the von Karman assumptions, the strains and displacements are related together. Using Hamilton’s principle and variational formulation, the governing motion equations and also the associated boundary conditions have been derived. The generalized differential quadrature method is applied to discretize and solve them. The effects of the most important parameters such as material gradient index, electromagnetic loads, boundary conditions, and also aspect ratio of the plate on the natural frequencies and mode shapes of the plate are considered and discussed in details. The results show that the effect of electric potential on the natural frequency is the opposite of the magnetic one. In other words as the magnetic potential increases, the rigidity of the plate increases too and the frequency enhances. The results are compared and verified with the simpler states in literature. The findings of this study are useful for designing more efficient sensors and actuators used in smart or intelligent structures.


2019 ◽  
Vol 2 (1) ◽  
pp. 67-73
Author(s):  
Koji Sekine

Free vibration analysis of L-shaped folded thin plates having various boundary conditions is presented. Vibration properties of the folded plates are analyzed by means of the Ritz method. Displacement functions satisfying the geometric boundary conditions are assumed in the form of double power series. The interconnection of plate elements of the folded plates is defined by translational and rotational coupling springs. The generalized eigenvalue problem, which is derived by means of minimizing the energy functional, is solved to determine the natural frequencies and mode shapes. The accuracy and validity of the present solutions are demonstrated through convergence studies and comparisons with the results from the literature and FEM (finite element method) analysis solutions. Numerical results are presented for different conditions, such as width ratio, length ratio and the four types of boundary condition.


2021 ◽  
Vol 9 (3) ◽  
pp. 251-262
Author(s):  
Gweon Sik Kim ◽  
Sang Jin Oh ◽  
Tae Eun Lee ◽  
Byoung Koo Lee

This paper deals with free vibrations of the axially functionally graded (AFG) horseshoe arch. The modulus of elasticity and the mass density of AFG material of arch are chosen as a univariate quadratic function. The differential equations with the boundary conditions that govern the free vibration of such arch are derived and numerically solved to calculate natural frequencies and mode shapes. Natural frequencies of this study agree well with those of the finite element ADINA. Parametric studies of the geometrical and mechanical properties of the arch on frequencies and mode shapes are performed and extensively discussed.


Sign in / Sign up

Export Citation Format

Share Document