F-MaMcDm: Sustainable Green-Based Hydrogen Production Technology Roadmap Using Fuzzy Multi-Aspect Multi-Criteria Decision-Making

2019 ◽  
Vol 16 (08) ◽  
pp. 1950057
Author(s):  
Behnoosh Matani ◽  
Babak Shirazi ◽  
Javad Soltanzadeh

In recent years, with increasing demand for fossil fuels, greenhouse gas emissions, acid rains, and air pollution have increased. These issues have encouraged industries to replace the existing fossil fuel system by the hydrogen energy system which is a clean energy carrier. Replacing hydrogen in the future energy systems needs a dynamic and flexible strategic tool for planning and management. Roadmapping tool is a strategic choice for supporting technology management in long-term planning and under the fast-changing environment in manufacturing technologies. This study tackles a novel methodology that considers the uncertainties and linguistic assessments for developing a green-based hydrogen production technology roadmap considering concurrent multi-layered aspects. The aim of this paper is to develop a dynamic and flexible technology roadmap using a combination of the classical roadmapping method with a novel fuzzy multi-aspect multi-criteria decision-making approach (F-MaMcDm). This study represents a quantitative paradigm to roadmapping instead of conventional descriptive “when and how” paradigm. The F-MaMcDm classifies sustainable green-based hydrogen production technologies considering four comprehensive aspects (technical, socio-political, environmental and economic) and criteria relevant to the aspects. The results show that biomass gasification is the first technology to be prioritized followed by other green-based hydrogen production technologies in a long time.

2020 ◽  
Vol 38 (6) ◽  
pp. 2099-2127
Author(s):  
Zheng Li ◽  
Wenda Zhang ◽  
Rui Zhang ◽  
Hexu Sun

The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy, reduce the adverse impact on the power grid system, and has the characteristics of green, low carbon, sustainable, etc., which is currently a global research hotspot. Based on the basic principles of hydrogen production technology, this paper introduces the current hydrogen energy system topology, and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized, and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis, the key technologies of multi-energy complementation of hydrogen energy system are elaborated, especially in-depth research and discussion on coordinated control strategies, energy storage and capacity allocation, energy management, and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented, which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.


2021 ◽  
pp. 1-18
Author(s):  
ShuoYan Chou ◽  
Truong ThiThuy Duong ◽  
Nguyen Xuan Thao

Energy plays a central part in economic development, yet alongside fossil fuels bring vast environmental impact. In recent years, renewable energy has gradually become a viable source for clean energy to alleviate and decouple with a negative connotation. Different types of renewable energy are not without trade-offs beyond costs and performance. Multiple-criteria decision-making (MCDM) has become one of the most prominent tools in making decisions with multiple conflicting criteria existing in many complex real-world problems. Information obtained for decision making may be ambiguous or uncertain. Neutrosophic is an extension of fuzzy set types with three membership functions: truth membership function, falsity membership function and indeterminacy membership function. It is a useful tool when dealing with uncertainty issues. Entropy measures the uncertainty of information under neutrosophic circumstances which can be used to identify the weights of criteria in MCDM model. Meanwhile, the dissimilarity measure is useful in dealing with the ranking of alternatives in term of distance. This article proposes to build a new entropy and dissimilarity measure as well as to construct a novel MCDM model based on them to improve the inclusiveness of the perspectives for decision making. In this paper, we also give out a case study of using this model through the process of a renewable energy selection scenario in Taiwan performed and assessed.


2020 ◽  
Vol 92 (8) ◽  
pp. 1305-1320 ◽  
Author(s):  
Yulia H. Budnikova ◽  
Vera V. Khrizanforova

AbstractNowadays, hydrogen has become not only an extremely important chemical product but also a promising clean energy carrier for replacing fossil fuels. Production of molecular H2 through electrochemical hydrogen evolution reactions is crucial for the development of clean-energy technologies. The development of economically viable and efficient H2 production/oxidation catalysts is a key step in the creation of H2-based renewable energy infrastructure. Intrinsic limitations of both natural enzymes and synthetic materials have led researchers to explore enzyme-induced catalysts to realize a high current density at a low overpotential. In recent times, highly active widespread numerous electrocatalysts, both homogeneous or heterogeneous (immobilized on the electrode), such as transition metal complexes, heteroatom- or metal-doped nanocarbons, metal-organic frameworks, and other metal derivatives (calix [4] resorcinols, pectates, etc.), which are, to one extent or another, structural or functional analogs of hydrogenases, have been extensively studied as alternatives for Pt-based catalysts, demonstrating prospects for the development of a “hydrogen economy”. This mini-review generalizes some achievements in the field of development of new electrocatalysts for H2 production/oxidation and their application for fuel cells, mainly focuses on the consideration of the catalytic activity of M[P2N2]22+ (M = Ni, Fe) complexes and other nickel structures which have been recently obtained.


Author(s):  
Jin Iwatsuki ◽  
Shinji Kubo ◽  
Seiji Kasahara ◽  
Nobuyuki Tanaka ◽  
Hiroki Noguchi ◽  
...  

The Japan Atomic Energy Agency (JAEA) is conducting research and development on nuclear hydrogen production using High Temperature Gas-cooled Reactor and thermochemical water-splitting Iodine-Sulfur (IS) process aiming to develop large-scale hydrogen production technology for “hydrogen energy system”. In this paper, the present status of R&D on IS process at JAEA is presented which focuses on examining integrity of such components as chemical reactors, separators, etc. Based on previous screening of materials of construction mainly from the viewpoint of corrosion resistance in the harsh process conditions of IS process, it was planned to fabricate the IS components and examine their integrity in the process environments. At present, among the components of IS process plant consisting of three chemical reaction sections, i.e., the Bunsen reaction section, the sulfuric acid decomposition section and the hydrogen iodide decomposition section, key components in the Bunsen reaction section was fabricated.


2019 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Roghayeh Ghasempour ◽  
Mohammad Alhuyi Nazari ◽  
Morteza Ebrahimi ◽  
Mohammad Hossein Ahmadi ◽  
H. Hadiyanto

Renewable energies have many advantages and their importance is rising owing to gravely mounting concerns for environmental issues and lack of fossil fuels in the future. Solar energy, well acknowledged as an inexhaustible source of energy, is developing dramatically for different purposes such as desalination and electricity generation. Appropriate solar power plant is very important factor for power generation due to its cost and other constraints. The applied technology is as important as the solar power plants location.  In this paper, a wide variety multi criteria decision making (MCDM) methods, investigated by various researchers, are presented to obtain effective criteria in selecting solar plants sites and solar plants technologies. There is not any comprehensive research providing all required criteria for decision making for site and technology selection. Based on the reviewed researches, weight of each criterion depends on many factors such as region, economy, accessibility, power network, maintenance costs, operating costs, etc. The important criteria for site selection are represented and investigated thoroughly in this review paper.© 2019. CBIORE-IJRED. All rights reservedArticle History: Received June 17th 2017; Received in revised form March 7th 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Ghasempour, R., Nazari, M.A., Ebrahimi, M., Ahmadi, M.H. and Hadiyanto, H. (2019) Multi-Criteria Decision Making (MCDM ) Approach for Selecting Solar Plants Site and Technology: A Review. Int Journal of Renewable Energy Development, 8(1), 15-25.https://doi.org/10.14710/ijred.8.1.15-25


2019 ◽  
Vol 8 (2) ◽  
pp. 169 ◽  
Author(s):  
Mohammdreza Nazemzadegan ◽  
Roghayeh Ghasempour

Hydrogen as a CO2-free fuel has been considered as a serious alternative for problematic fossil fuels in recent decades Photoelectrochemical (PEC) water splitting is a developing solar-based technology for hydrogen production. In this study, some possible options for upgrading this technology from R&D stage to prototype stage through a material selection approach is investigated. For these purpose, TOPSIS algorithm through a multi criteria decision making (MCDM) approach was utilized for evaluating different (PEC)-based hydrogen production materials. TiO2, WO3 and BiVO4 as three semiconductors known for their PEC application, were selected as alternatives in this decision-making study. After defining a set of criteria, which were assessed based on similar studies and experts' visions, a group of ten PEC-experts including university professors and PhD students were asked to fill the questionnaires. The eight criteria considered in this study are include "Study Cost", "Synthesis Simplicity", "Facility & Availability", "Deposition capability on TCO", "Modifiability", "Commercialization in H2 production", "Physical and Chemical Durability" and "Eco-friendly Fabrication". The final TOPSIS results indicates that TiO2 is selected as the best semiconductor for further investments in order to upgrade the PEC-based hydrogen production technology from R&D level to prototype stage. ©2019. CBIORE-IJRED. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document