scholarly journals NONSINGULAR COMPLEX INSTANTONS ON EUCLIDEAN SPACETIME

2008 ◽  
Vol 05 (06) ◽  
pp. 963-971 ◽  
Author(s):  
LLOHANN DALLAGNOL ◽  
MARCOS JARDIM

Building on a variation of 't Hooft's harmonic function ansatz for SU(2) instantons on ℝ4, we provide new explicit nonsingular solutions of the Yang–Mills anti-self-duality equations on Euclidean spacetime with gauge group SL(2, ℂ) and SL(3, ℝ).

We present a self-contained account of the ideas of R. Penrose connecting four-dimensional Riemannian geometry with three-dimensional complex analysis. In particular we apply this to the self-dual Yang-Mills equations in Euclidean 4-space and compute the number of moduli for any compact gauge group. Results previously announced are treated with full detail and extended in a number of directions.


1991 ◽  
Vol 06 (05) ◽  
pp. 399-408 ◽  
Author(s):  
IOANNIS BAKAS ◽  
DIDIER A. DEPIREUX

We obtain the (N+1)-th flow of the generalized (N–1)-KdV hierarchy from self-dual Yang-Mills equations with gauge group SL(N) and space-time signature (2, 2). The dimensional reduction is performed by using a pair of orthogonal Killing vector fields (one time-like and one null) and we generalize previous results by Mason and Sparling to N≥2. We illustrate our method with explicit examples and determine the form of the self-dual solutions for N=2, 3, 4. Applications of this formalism and its possible generalizations are also discussed briefly.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Guido Festuccia ◽  
Anastasios Gorantis ◽  
Antonio Pittelli ◽  
Konstantina Polydorou ◽  
Lorenzo Ruggeri

Abstract We construct a large class of gauge theories with extended supersymmetry on four-dimensional manifolds with a Killing vector field and isolated fixed points. We extend previous results limited to super Yang-Mills theory to general $$ \mathcal{N} $$ N = 2 gauge theories including hypermultiplets. We present a general framework encompassing equivariant Donaldson-Witten theory and Pestun’s theory on S4 as two particular cases. This is achieved by expressing fields in cohomological variables, whose features are dictated by supersymmetry and require a generalized notion of self-duality for two-forms and of chirality for spinors. Finally, we implement localization techniques to compute the exact partition function of the cohomological theories we built up and write the explicit result for manifolds with diverse topologies.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study exact soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2) in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density TrFμνFμν can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group G = U(2) can be realized on our solition solutions or not is also discussed on each real space.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950099
Author(s):  
Richard Pincak ◽  
Kabin Kanjamapornkul

We extend generalized autoregressive conditional heteroscedastic (GARCH) errors in the Euclidean plane of the scalar field to the tensor field and to the spinor field [Formula: see text], the so-called spinor garch, S-GARCH. We use the model of S-GARCH to explain the stylized fact in financial time series, the so-called volatility cluster, by using hyperbolic coordinate with induced complex lag of delay time scale in mirror symmetry concept. As the result of this theory, we obtain an equivalent form of Yang–Mills equation for financial time series as the interaction between the behavior of traders, the so-called, fundamentalist, chatlist and noise trader, by using volatility in spinor field with invariant of the gauge group [Formula: see text], the so-called modeling of the financial market in icosahedral supersymmetry gauge group.


Sign in / Sign up

Export Citation Format

Share Document