scholarly journals ENTANGLEMENT FRUSTRATION IN MULTIMODE GAUSSIAN STATES

2012 ◽  
Vol 09 (02) ◽  
pp. 1260022 ◽  
Author(s):  
COSMO LUPO ◽  
STEFANO MANCINI ◽  
PAOLO FACCHI ◽  
GIUSEPPE FLORIO ◽  
SAVERIO PASCAZIO

Bipartite entanglement between two parties of a composite quantum system can be quantified in terms of the purity of one party and there always exists a pure state of the total system that maximizes it (and minimizes purity). When many different bipartitions are considered, the requirement that purity be minimal for all bipartitions gives rise to the phenomenon of entanglement frustration. This feature, observed in quantum systems with both discrete and continuous variables, can be studied by means of a suitable cost function whose minimizers are the maximally multipartite-entangled states (MMES). In this paper we extend the analysis of multipartite entanglement frustration of Gaussian states in multimode bosonic systems. We derive bounds on the frustration, under the constraint of finite mean energy, in the low- and high-energy limits.

Atoms ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 46
Author(s):  
Andrea Valdés-Hernández ◽  
Ana María Cetto ◽  
Luis de la Peña

The correlation of projections of the momentum operators of two particles is used to derive a quantum inequality for continuous variables, which must be satisfied by any bipartite system in a pure state. This inequality resembles a Clauser–Horne–Shimony–Holt (CHSH)-type inequality except for additional terms related to the imaginary component of the weak value of the momentum, which normally remains concealed in the usual quantum description but turns out to be of relevance for entangled states. Our results shed new light on the link between noncommutativity, entanglement and nonlocality of the quantum description.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Awais Khan ◽  
Junaid ur Rehman ◽  
Kehao Wang ◽  
Hyundong Shin

Abstract Unified-(q, s) entanglement $$({{\mathscr{U}}}_{q,s})$$ ( U q , s ) is a generalized bipartite entanglement measure, which encompasses Tsallis-q entanglement, Rényi-q entanglement, and entanglement of formation as its special cases. We first provide the extended (q; s) region of the generalized analytic formula of  $${{\mathscr{U}}}_{q,s}$$ U q , s . Then, the monogamy relation based on the squared  $${{\mathscr{U}}}_{q,s}$$ U q , s for arbitrary multiqubit mixed states is proved. The monogamy relation proved in this paper enables us to construct an entanglement indicator that can be utilized to identify all genuine multiqubit entangled states even the cases where three tangle of concurrence loses its efficiency. It is shown that this monogamy relation also holds true for the generalized W-class state. The αth power $${{\mathscr{U}}}_{q,s}$$ U q , s based general monogamy and polygamy inequalities are established for tripartite qubit states.


2017 ◽  
Vol 15 (03) ◽  
pp. 1750022 ◽  
Author(s):  
Mazhar Ali

We study the dynamics of genuine multipartite entanglement for quantum systems upto four qubits interacting with general collective dephasing process. Using a computable entanglement monotone for multipartite systems, we observe the feature of freezing dynamics of genuine entanglement for three and four qubits entangled states. We compare the dynamics with that of random states and find that most states exibit this feature. We then study the effects of collective dephasing on genuine nonlocality and find out that although quantum states remain genuinely entangled yet their genuine nonlocality is lost in a finite time. We show the sensitivity of asymptotic states being genuinely entangled by mixing white noise.


2011 ◽  
Vol 09 (supp01) ◽  
pp. 27-38 ◽  
Author(s):  
MICHELE ALLEGRA ◽  
PAOLO GIORDA ◽  
MATTEO G. A. PARIS

We consider photon-number entangled states (PNES) and study the degradation of their entanglement in a noisy channel, using different separability criteria and a recently proposed measure of nonGaussianity as key tools. Upon comparing Gaussian and nonGaussian states within the class, we collect some evidence that Gaussian states are maximally robust against noise, i.e. the complete loss of entanglement occurs in maximal time. However, the gap with respect to nonGaussian states is negligible for sufficiently high energy of the states.


2018 ◽  
Vol 18 (1&2) ◽  
pp. 85-113 ◽  
Author(s):  
Katharina Schwaiger ◽  
Barbara Kraus

We investigate the entanglement of bipartite systems from an operational point of view. Main emphasis is put on bipartite pure states in the single copy regime. First, we present an operational characterization of bipartite pure state entanglement, viewing the state as a multipartite state. Then, we investigate the properties and relations of two classes of operational bipartite and multipartite entanglement measures, the so-called source and the accessible entanglement. The former measures how easy it is to generate a given state via local operations and classical communication (LOCC) from some other state, whereas the latter measures the potentiality of a state to be convertible to other states via LOCC. We investigate which parameter regime is physically available, i.e. for which values of these measures does there exist a bipartite pure state. Moreover, we determine, given some state, which parameter regime can be accessed by it and from which parameter regime it can be accessed. We show that this regime can be determined analytically using the Positivstellensatz. We compute the boundaries of these sets and the boundaries of the corresponding source and accessible sets. Furthermore, we relate these results to other entanglement measures and compare their behaviors.


2019 ◽  
Vol 374 (2) ◽  
pp. 823-871 ◽  
Author(s):  
Simon Becker ◽  
Nilanjana Datta

Abstract By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite dimensions, which are stronger than previously known bounds. We extensively discuss applications of our theory to quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.


2003 ◽  
Vol 3 (3) ◽  
pp. 193-202
Author(s):  
K. Chen ◽  
L.-A. Wu

Motivated by the Kronecker product approximation technique, we have developed a very simple method to assess the inseparability of bipartite quantum systems, which is based on a realigned matrix constructed from the density matrix. For any separable state, the sum of the singular values of the matrix should be less than or equal to $1$. This condition provides a very simple, computable necessary criterion for separability, and shows powerful ability to identify most bound entangled states discussed in the literature. As a byproduct of the criterion, we give an estimate for the degree of entanglement of the quantum state.


2017 ◽  
Vol 26 (03) ◽  
pp. 1741006 ◽  
Author(s):  
Hanna Makaruk

Quantum computers by their nature are many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.


2019 ◽  
Vol 19 (11&12) ◽  
pp. 935-951
Author(s):  
Hamza Adnane ◽  
Matteo G.A. Paris

We address de-Gaussification of continuous variables Gaussian states by optimal non-deterministic noiseless linear amplifier (NLA) and analyze in details the properties of the amplified states. In particular, we investigate the entanglement content and the non-Gaussian character for the class of non-Gaussian entangled state obtained by using NL-amplification of two-mode squeezed vacua (twin-beam, TWB). We show that entanglement always increases, whereas improved EPR correlations are observed only when the input TWB has low energy. We then examine a Braunstein-Kimble-like protocol for the teleportation of coherent states, and compare the performances of TWB-based teleprotation with those obtained using NL-amplified resources. We show that teleportation fidelity and security may be improved for a large range of NLA parameters (gain and threshold).


Sign in / Sign up

Export Citation Format

Share Document