scholarly journals Reciprocal NUT spacetimes

2015 ◽  
Vol 12 (09) ◽  
pp. 1550083
Author(s):  
Davood Momeni ◽  
Surajit Chattopadhyay ◽  
Ratbay Myrzakulov

In this paper, we study the Ehlers' transformation (sometimes called gravitational duality rotation) for reciprocal static metrics. First, we introduce the concept of reciprocal metric. We prove a theorem which shows how we can construct a certain new static solution of Einstein field equations using a seed metric. Later, we investigate the family of stationary spacetimes of such reciprocal metrics. The key here is a theorem from Ehlers', which relates any static vacuum solution to a unique stationary metric. The stationary metric has a magnetic charge. The spacetime represents Newman-Unti-Tamburino (NUT) solutions. Since any stationary spacetime can be decomposed into a 1 + 3 time-space decomposition, Einstein field equations for any stationary spacetime can be written in the form of Maxwell's equations for gravitoelectromagnetic fields. Further, we show that this set of equations is invariant under reciprocal transformations. An additional point is that the NUT charge changes the sign. As an instructive example, by starting from the reciprocal Schwarzschild as a spherically symmetric solution and reciprocal Morgan–Morgan disk model as seed metrics we find their corresponding stationary spacetimes. Starting from any static seed metric, performing the reciprocal transformation and by applying an additional Ehlers' transformation we obtain a family of NUT spaces with negative NUT factor (reciprocal NUT factors).

2021 ◽  
Vol 36 (02) ◽  
pp. 2150015
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
Safiqul Islam

The present work looks for new spherically symmetric wormhole solutions of the Einstein field equations based on the well-known embedding class 1, i.e. Karmarkar condition. The embedding theorems have an interesting property that connects an [Formula: see text]-dimensional space–time to the higher-dimensional Euclidean flat space–time. The Einstein field equations yield the wormhole solution by violating the null energy condition (NEC). Here, wormholes solutions are obtained corresponding to three different redshift functions: rational, logarithm, and inverse trigonometric functions, in embedding class 1 space–time. The obtained shape function in each case satisfies the flare-out condition after the throat radius, i.e. good enough to represents wormhole structure. In cases of WH1 and WH2, the solutions violate the NEC as well as strong energy condition (SEC), i.e. here the exotic matter content exists within the wormholes and strongly sustains wormhole structures. In the case of WH3, the solution violates NEC but satisfies SEC, so for violating the NEC wormhole preserve due to the presence of exotic matter. Moreover, WH1 and WH2 are asymptotically flat while WH3 is not asymptotically flat. So, indeed, WH3 cutoff after some radial distance [Formula: see text], the Schwarzschild radius, and match to the external vacuum solution.


1994 ◽  
Vol 03 (03) ◽  
pp. 639-645
Author(s):  
L.K. PATEL ◽  
LAKSHMI S. DESAI

A class of nonstatic inhomogeneous plane-symmetric solutions of Einstein field equations is obtained. The source for these solutions is a viscous fluid with heat flow. The fluid flow is irrotational and it has nonzero expansion, shear and acceleration. All these solutions have a big-bang singularity. The matter-free limit of the solutions is the well-known Kasner vacuum solution. Some physical features of the solutions are briefly discussed.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Alvaro Restuccia ◽  
Francisco Tello-Ortiz

AbstractA spherically symmetric solution of the field equations of the Hořava–Lifshitz gravity–gauge vector interaction theory is obtained and analyzed. It describes a charged throat. The solution exists provided a restriction on the relation between the mass and charge is satisfied. The restriction reduces to the Reissner–Nordström one in the limit in which the coupling constants tend to the relativistic values of General Relativity. We introduce the correct charts to describe the solution across the entire manifold, including the throat connecting an asymptotic Minkowski space-time with a singular 3+1 dimensional manifold. The solution external to the throat on the asymptotically flat side tends to the Reissner–Nordström space-time at the limit when the coupling parameter, associated with the term in the low energy Hamiltonian that manifestly breaks the relativistic symmetry, tends to zero. Also, when the electric charge is taken to be zero the solution becomes the spherically symmetric and static solution of the Hořava–Lifshitz gravity.


2019 ◽  
pp. 80-91
Author(s):  
Steven Carlip

Chapter 3 used the Schwarzschild metric to obtain predictions for the Solar System. In this chapter, that metric is derived as the unique static, spherically symmetric solution of the vacuum Einstein field equations. For the Solar System, this vacuum solution must be joined to an “interior solution” describing the interior of the Sun. Such solutions are discussed briefly. If, on the other hand, one assumes “vacuum all the way down,” the solution describes a black hole. The chapter analyzes the geometry and physics of the nonrotating black hole: the event horizon, the Kruskal-Szekeres extension, the horizon as a trapped surface and as a Killing horizon. Penrose diagrams are introduced, and a short discussion is given of the four laws of black hole mechanics.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950071
Author(s):  
Irene Brito

The problem of generating solutions of the Einstein field equations with an elastic energy–momentum tensor from the Schwarzschild vacuum solution by means of conformal transformations is analyzed. Applying the formulation of relativistic elasticity, suitable conformal factors are obtained for static and non-static elastic spacetime configurations and particular solutions are presented. This work shows that the technique used here permits generating new elastic matter solutions from a vacuum spacetime.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Gamal G. L. Nashed

A nondiagonal spherically symmetric tetrad field, involving four unknown functions of radial coordinaterplus an angleΦ, which is a generalization of the azimuthal angleϕ, is applied to the field equations of (1+4)-dimensionalf(T)gravity theory. A special vacuum solution with one constant of integration is derived. The physical meaning of this constant is shown to be related to the gravitational mass of the system and the associated metric represents Schwarzschild in (1+4)-dimension. The scalar torsion related to this solution vanishes. We put the derived solution in a matrix form and rewrite it as a product of three matrices: the first represents a rotation while the second represents an inertia and the third matrix is the diagonal square root of Schwarzschild spacetime in (1+4)-dimension.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Gamal G. L. Nashed

We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which involves a generalization of the angleϕand get a new tetrad field. Using this tetrad, we get a differential equation from the scalar torsionT=TαμνSαμν. Solving this differential equation we obtain a solution to thef(T)gravity theories under certain conditions on the form off(T)and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar, torsion tensor, and its contraction to explain the singularities associated with this solution.


Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


Sign in / Sign up

Export Citation Format

Share Document