scholarly journals Revisiting Connes’ finite spectral distance on noncommutative spaces: Moyal plane and fuzzy sphere

2018 ◽  
Vol 15 (12) ◽  
pp. 1850204 ◽  
Author(s):  
Yendrembam Chaoba Devi ◽  
Kaushlendra Kumar ◽  
Biswajit Chakraborty ◽  
Frederik G. Scholtz

Beginning with a review of the existing literature on the computation of spectral distances on noncommutative spaces like Moyal plane and fuzzy sphere, adaptable to Hilbert–Schmidt operatorial formulation, we carry out a correction, revision and extension of the algorithm provided in [1] i.e. [F. G. Scholtz and B. Chakraborty, J. Phys. A, Math. Theor. 46 (2013) 085204] to compute the finite Connes’ distance between normal states. The revised expression, which we provide here, involves the computation of the infimum of an expression which involves the “transverse” [Formula: see text] component of the algebra element in addition to the “longitudinal” component [Formula: see text] of [1], identified with the difference of density matrices representing the states, whereas the expression given in [1] involves only [Formula: see text] and corresponds to the lower bound of the distance. This renders the revised formula less user-friendly, as the determination of the exact transverse component for which the infimum is reached remains a nontrivial task, but under rather generic conditions it turns out that the Connes’ distance is proportional to the Hilbert-Schmidt norm of [Formula: see text], leading to considerable simplification. In addition, we can determine an upper bound of the distance by emulating and adapting the approach of [P. Martinetti and L. Tomassini, Commun. Math. Phys. 323 (2013) 107–141]. We then look for an optimal element for which the upper bound is reached. We are able to find one for the Moyal plane through the limit of a sequence obtained by finite-dimensional projections of the representative of an element belonging to a multiplier algebra, onto the subspaces of the total Hilbert space, occurring in the spectral triple and spanned by the eigen-spinors of the respective Dirac operator. This is in contrast with the fuzzy sphere, where the upper bound, which is given by the geodesic of a commutative sphere, is never reached for any finite [Formula: see text]-representation of [Formula: see text]. Indeed, for the case of maximal noncommutativity ([Formula: see text]), the finite distance is shown to coincide exactly with the above-mentioned lower bound, with the transverse component playing no role. This, however, starts changing from [Formula: see text] onwards and we try to improve the estimate of the finite distance and provide an almost exact result, using our revised algorithm. The contrasting features of these types of noncommutative spaces becomes quite transparent through the analysis, carried out in the eigen-spinor bases of the respective Dirac operators.

1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.


Author(s):  
Martin Biehl ◽  
Takashi Ikegami ◽  
Daniel Polani

We present a first formal analysis of specific and complete local integration. Complete local integration was previously proposed as a criterion for detecting entities or wholes in distributed dynamical systems. Such entities in turn were conceived to form the basis of a theory of emergence of agents within dynamical systems. Here, we give a more thorough account of the underlying formal measures. The main contribution is the disintegration theorem which reveals a special role of completely locally integrated patterns (what we call ι-entities) within the trajectories they occur in. Apart from proving this theorem we introduce the disintegration hierarchy and its refinement-free version as a way to structure the patterns in a trajectory. Furthermore we construct the least upper bound and provide a candidate for the greatest lower bound of specific local integration. Finally, we calculate the i-entities in small example systems as a first sanity check and find that ι-entities largely fulfil simple expectations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Miao Wang ◽  
Xinke Wang ◽  
Peng Han ◽  
Wenfeng Sun ◽  
Shengfei Feng ◽  
...  

A circularly polarized vortex beam possesses similar focusing properties as a radially polarized beam. This type of beam is highly valuable for developing optical manufacturing technology, microscopy, and particle manipulation. In this work, a left-hand circularly polarized terahertz (THz) vortex beam (CPTVB) is generated by utilizing a THz quarter wave plate and a spiral phase plate. Focusing properties of its longitudinal component Ez are detailedly discussed on the simulation and experiment. With reducing the F-number of the THz beam and comparing with a transverse component Ex of a general circularly polarized THz beam, the simulation results show that the focal spot size and intensity of its Ez component can reach 87 and 50% of Ex under a same focusing condition. In addition, the experimental results still demonstrate that the left-hand CPTVB can always maintain fine Ez focusing properties in a broad bandwidth, which manifest the feasibility of this class of THz beams.


1998 ◽  
Vol 5 (10) ◽  
Author(s):  
Jakob Pagter ◽  
Theis Rauhe

We study the fundamental problem of sorting in a sequential model of computation and in particular consider the time-space trade-off (product of time and space) for this problem.<br />Beame has shown a lower bound of  Omega(n^2) for this product leaving a gap of a logarithmic factor up to the previously best known upper bound of O(n^2 log n) due to Frederickson. Since then, no progress has been made towards tightening this gap.<br />The main contribution of this paper is a comparison based sorting algorithm which closes this gap by meeting the lower bound of Beame. The time-space product O(n^2) upper bound holds for the full range of space bounds between log n and n/log n. Hence in this range our algorithm is optimal for comparison based models as well as for the very powerful general models considered by Beame.


Sign in / Sign up

Export Citation Format

Share Document