Nonlinearly charged black holes surrounded by cloud of strings and quintessence in Einstein-Massive gravity

Author(s):  
Askar Ali

In this work, a new model of double-Logarithmic electrodynamics has been minimally coupled to Einstein-massive gravity and the nonlinearly charged black holes in the presence of quintessential cosmic dark energy and string cloud background are investigated. In this set up, new magnetically charged black hole solution has been derived. Thermodynamics of these black holes are also analyzed and different thermodynamic quantities are computed. Basic thermodynamic quantities such as heat capacity and Hawking temperature have been plotted and the regions corresponding to thermodynamic stability and instability are pointed out. The generalized first law of thermodynamics and the associated Smarr’s relation have also been written down in this context of massive gravity and matter sources. At last, the nonlinearly electrically charged black holes are also briefly studied.

2016 ◽  
Vol 32 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Huai-Fan Li ◽  
Meng-Sen Ma ◽  
Ya-Qin Ma

We study the thermodynamic properties of Schwarzschild–de Sitter (SdS) black hole and Reissner–Nordström–de Sitter (RNdS) black hole in view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.


2013 ◽  
Vol 91 (3) ◽  
pp. 236-241 ◽  
Author(s):  
M. Sharif ◽  
Wajiha Javed

This paper is devoted to studying the thermodynamics of charged Newman–Unti–Tamburino black hole solutions to the field equations, including rotation and acceleration. We evaluate some thermodynamic quantities like surface gravity, Hawking temperature, the entropy–area relationship, heat capacity, and the first law of thermodynamics. These quantities reduce to the results already available in the literature for some particular cases. We also explore their graphical behavior.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
João M. S. Oliveira ◽  
Alexandre M. Pombo

2020 ◽  
Vol 35 (10) ◽  
pp. 2050070
Author(s):  
Ujjal Debnath

We study the four-dimensional (i) modified Bardeen black hole, (ii) modified Hayward black hole, (iii) charged regular black hole and (iv) magnetically charged regular black hole. For modified Bardeen black hole and modified Hayward black hole, we found only one horizon (event horizon) and then we found some thermodynamic quantities like the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the event horizon. We here study the bounds of the above thermodynamic quantities for these black holes on the event horizon. Then, we examine the thermodynamics stability of the black holes with some conditions. Next, we studied the charged regular black hole and magnetically charged regular black hole and found two horizons (Cauchy and event horizons) of these black holes. Then, we found the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the Cauchy and event horizons. Then, we get some conditions for thermodynamic stability/instability of the black holes. We found the radius of the extremal horizon and Christodoulou–Ruffiini mass and then analyze the above thermodynamic quantities on the extremal horizon. We calculate the sum/subtraction, product, division and sum/subtraction of inverse of surface areas, entropies, irreducible masses, temperatures, Komar energies and specific heat capacities on both the horizons. From these, we found the bounds of the above quantities on the horizons.


2003 ◽  
Vol 68 (8) ◽  
Author(s):  
Subharthi Ray ◽  
Aquino L. Espíndola ◽  
Manuel Malheiro ◽  
José P. S. Lemos ◽  
Vilson T. Zanchin

2011 ◽  
Vol 28 (8) ◽  
pp. 085003 ◽  
Author(s):  
Owen Pavel Fernandez Piedra ◽  
Jeferson de Oliveira

2018 ◽  
Vol 27 (07) ◽  
pp. 1850069 ◽  
Author(s):  
Iarley P. Lobo ◽  
H. Moradpour ◽  
J. P. Morais Graça ◽  
I. G. Salako

A promising theory in modifying general relativity (GR) by violating the ordinary energy–momentum conservation law in curved spacetime is the Rastall theory of gravity. In this theory, geometry and matter fields are coupled to each other in a nonminimal way. Here, we study thermodynamic properties of some black hole (BH) solutions in this framework, and compare our results with those of GR. We demonstrate how the presence of these matter sources amplifies the effects caused by the Rastall parameter in thermodynamic quantities. Our investigation also shows that BHs with radius smaller than a certain amount ([Formula: see text]) have negative heat capacity in the Rastall framework. In fact, it is a lower bound for the possible values of horizon radius satisfied by the stable BHs.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 205 ◽  
Author(s):  
Irina Dymnikova ◽  
Evgeny Galaktionov

We study the dynamics of electromagnetic fields of regular rotating electrically charged black holes and solitons replacing naked singularities in nonlinear electrodynamics minimally coupled to gravity (NED-GR). They are related by electromagnetic and gravitational interactions and described by the axially symmetric NED-GR solutions asymptotically Kerr-Newman for a distant observer. Geometry is described by the metrics of the Kerr-Schild class specified by T t t = T r r ( p r = − ρ ) in the co-rotating frame. All regular axially symmetric solutions obtained from spherical solutions with the Newman-Janis algorithm belong to this class. The basic generic feature of all regular objects of this class, both electrically charged and electrically neutral, is the existence of two kinds of de Sitter vacuum interiors. We analyze the regular solutions to dynamical equations for electromagnetic fields and show which kind of a regular interior is favored by electromagnetic dynamics for NED-GR objects.


2020 ◽  
Author(s):  
Stephane Maes

In this paper, we start from conventional GUTs and ToEs and discuss their challenges due not only to the lack of observations of proton decays and magnetic monopoles, but also to the fact that when gravity is considered, especially with mechanisms à la multi-folds, where gravity emerges from entanglement, both these phenomena are expected to not exist. With only a few exception, ToEs are badly hurt, including many superstrings, and most GUTs are knocked out. Because of the massive gravity at small scale contributed by entanglement in a multi-fold universe, we encounter new lifecycles for charged black holes and discover that, at small scales, gravity is no more the weakest interaction. In fact, sources and carriers of all interactions democratically carry gravity along with their interaction the same way and all interactions have similar strength. It becomes a new symmetric state with an Ultimate Unification of all the forces, but without the hierarchies of symmetry groups typically involved in GUTs, and without intermediate GUTs not involving gravity from the get-go. These results are obtained in a multi-fold universe, but with discussions of what can be said about our real universe.


Sign in / Sign up

Export Citation Format

Share Document