Engineering non-classical correlation and teleportation with Robust fidelity using Jaynes–Cummings model

Author(s):  
Sanaa Seddik ◽  
Khadija El Anouz ◽  
Abderrahim El Allati

In this paper, we propose a model to describe the geometry of quantum correlations and entanglement through their distinct physical significance in quantum information processing and modern communications. However, geometric discord, using trace, Hilbert–Schmidt distances, and entanglement of formation, is engineered to be a well-defined non-classical correlation measure of an atomic field system. It consists of employing Jaynes–Cummings model to study the interaction between an excited atom at two levels and a single electromagnetic field mode inside an electrodynamic cavity in two cases, namely resonance and non-resonance. In fact, the dynamics of these measures depends decisively on the atom-field initial parameters where, importantly, the field parameters can be specified as control settings to implement an optimal teleportation protocol. The obtained results reveal that the behaviors of teleported geometric quantum discord and entanglement are similar to those displayed for maximum fidelity in terms of fully entanglement fraction. Therefore, since fidelity always exceeds the classical limit, one can design a quantum teleportation scheme with robust fidelity superior to any conventional communication protocol.

2013 ◽  
Vol 13 (5&6) ◽  
pp. 469-478
Author(s):  
Xi-Jun Ren ◽  
Heng Fan

We consider a monogamy inequality of quantum discord in a pure tripartite state and show that it is equivalent to an inequality between quantum mutual information and entanglement of formation of two parties. Since this inequality does not hold for arbitrary bipartite states, quantum discord can generally be both monogamous and polygamous. We also carry out numerical calculations for some special states. The upper bounds of quantum discord and classical correlation are also discussed and we give physical analysis on the invalidness of a previous conjectured upper bound of quantum correlation. Our results provide new insights for further understanding of distributions of quantum correlations.


2016 ◽  
Vol 14 (03) ◽  
pp. 1650016 ◽  
Author(s):  
Ya-Li Yuan ◽  
Xi-Wen Hou

The investigation of quantum discord has mostly focused on two-qubit systems due to the complicated minimization involved in quantum discord for high-dimensional states. In this work, three geometric discords are studied for the thermal state in a two-qutrit system with various couplings, external magnetic fields, and temperatures as well, where the entanglement measured in terms of the generalized negativity is calculated for reference. It is shown that three geometric discords are more robust against temperature and magnetic field than the entanglement negativity. However, all four quantities exhibit a similar behavior at lower temperature and weak magnetic field. Remarkably, three geometric discords at finite temperature reveal the phenomenon of double sudden changes at different magnetic fields while the negativity does not. Moreover, the hierarchy among three discords is discussed. Those adjustable discords with the varied coupling, temperature, and magnetic field are useful for the understanding of quantum correlations in high-dimensional states and quantum information processing.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345024 ◽  
Author(s):  
STEFANO OLIVARES ◽  
MATTEO G. A. PARIS

We address the balance of quantum correlations for continuous variable (CV) states. In particular, we consider a class of feasible tripartite CV pure states and explicitly prove two Koashi–Winter-like conservation laws involving Gaussian entanglement of formation (EoF), Gaussian quantum discord and sub-system Von Neumann entropies. We also address the class of tripartite CV mixed states resulting from the propagation in a noisy environment, and discuss how the previous equalities evolve into inequalities.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550044 ◽  
Author(s):  
P. Espoukeh ◽  
R. Rahimi ◽  
S. Salimi ◽  
P. Pedram

Many-qubit entanglement is crucial for quantum information processing although its exploitation is hindered by the detrimental effects of the environment surrounding the many-qubit system. It is thus of importance to study the dynamics of general multipartite non-classical correlation, including but not restricted to entanglement, under noise. We did this study for four-qubit Greenberger–Horne–Zeilinga (GHZ) state under most common noises in an experiment and found that non-classical correlation is more robust than entanglement except when it is imposed to dephasing channel. Quantum discord presents a sudden transition in its dynamics for Pauli-X and Pauli-Y noises as well as Bell-diagonal states interacting with dephasing reservoirs and it decays monotonically for Pauli-Z and isotropic noises.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 90 ◽  
Author(s):  
Lukas Postler ◽  
Ángel Rivas ◽  
Philipp Schindler ◽  
Alexander Erhard ◽  
Roman Stricker ◽  
...  

Correlations between different partitions of quantum systems play a central role in a variety of many-body quantum systems, and they have been studied exhaustively in experimental and theoretical research. Here, we investigate dynamical correlations in the time evolution of multiple parts of a composite quantum system. A rigorous measure to quantify correlations in quantum dynamics based on a full tomographic reconstruction of the quantum process has been introduced recently [Á. Rivas et al., New Journal of Physics, 17(6) 062001 (2015).]. In this work, we derive a lower bound for this correlation measure, which does not require full knowledge of the quantum dynamics. Furthermore we also extend the correlation measure to multipartite systems. We directly apply the developed methods to a trapped ion quantum information processor to experimentally characterize the correlations in quantum dynamics for two- and four-qubit systems. The method proposed and demonstrated in this work is scalable, platform-independent and applicable to other composite quantum systems and quantum information processing architectures. We apply the method to estimate spatial correlations in environmental noise processes, which are crucial for the performance of quantum error correction procedures.


2021 ◽  
Vol 3 (1) ◽  
pp. 228-241
Author(s):  
Rahul Raj ◽  
Shreya Banerjee ◽  
Prasanta K. Panigrahi

Measurements leading to the collapse of states and the non-local quantum correlations are the key to all applications of quantum mechanics as well as in the studies of quantum foundation. The former is crucial for quantum parameter estimation, which is greatly affected by the physical environment and the measurement scheme itself. Its quantification is necessary to find efficient measurement schemes and circumvent the non-desirable environmental effects. This has led to the intense investigation of quantum metrology, extending the Cramér–Rao bound to the quantum domain through quantum Fisher information. Among all quantum states, the separable ones have the least quantumness; being devoid of the fragile non-local correlations, the component states remain unaffected in local operations performed by any of the parties. Therefore, using these states for the remote design of quantum states with high quantum Fisher information can have diverse applications in quantum information processing; accurate parameter estimation being a prominent example, as the quantum information extraction solely depends on it. Here, we demonstrate that these separable states with the least quantumness can be made extremely useful in parameter estimation tasks, and further show even in the case of the shared channel inflicted with the amplitude damping noise and phase flip noise, there is a gain in Quantum Fisher information (QFI). We subsequently pointed out that the symmetric W states, incapable of perfectly teleporting an unknown quantum state, are highly effective for remotely designing quantum states with high quantum Fisher information.


2019 ◽  
Vol 97 (1) ◽  
pp. 42-50
Author(s):  
Mohammad Bagher Arjmandi

In this paper, some concepts of quantum correlations, such as one-way quantum deficit, purity, and entanglement of formation are investigated between the modes of Dirac fields in noninertial frames. We consider two bipartite divisions of a tripartite system constructed by initial Werner states, which is shared between two relatively accelerated observers. The degradation of these quantum correlations is shown when the acceleration parameter increases. However, a nonzero amount of correlations survives even at infinite acceleration limit. Furthermore, we study the inevitable influence of mixedness factor of initial state on the quantum correlations behaviour. Finally, we review our calculation beyond single-mode approximation and point out some differences and similarities between the two regimes.


2013 ◽  
Vol 11 (08) ◽  
pp. 1350070 ◽  
Author(s):  
XIAO-JING LI ◽  
HUI-HUI JI ◽  
XI-WEN HOU

The characterization of quantum discord (QD) has been well understood only for two-qubit states and is little known for mixed states beyond qubits. In this work, thermal quantum discord is studied for a qutrit system in different magnetic fields, where classical correlation and entanglement negativity are calculated for comparison. It is shown that the discord is more robust against temperature than the negativity. For a suitable region of magnetic field and its direction, the discord is non-zero while the negativity is zero. When the system is at a lower temperature, these three quantities, however, display a similar behavior for the varied field and direction, and their discontinuities come from crossovers between different ground states in the system. Moreover, the inequality between the quantum and classical correlations depends upon the system parameters as well as the temperature. In particular, both correlations are equal at a suitable field, direction, and temperature. Remarkably, such an equality remains for a strong field in the antiparallel direction, while both correlations in two-qubit systems are identical for any antiparallel field and temperature. These are useful for quantum information and understanding quantum correlations in qutrit mixed states.


2014 ◽  
Vol 29 (02) ◽  
pp. 1450249
Author(s):  
Y. H. Ji ◽  
X. D. Wan

We investigate the influence of the composite effect and information backflow effect in non-Markovian channel on the dynamics of quantum correlation including quantum entanglement and quantum discord. It is found that, the composite effect of independent channels is not only harmful to the maintenance of quantum correlation but also unfavorable for the maintenance of classic correlation. In a non-Markovian channel, by regulating the discord between qubit and the center frequency of cavity model, the time of quantum correlation and classical correlation of the system can be effectively prolonged. Thus, the quantum information processing can be achieved more easily under larger detuning.


Author(s):  
E. B. Fel'dman ◽  
A. N. Pyrkov ◽  
A. I. Zenchuk

Multiple quantum (MQ) NMR is an effective tool for the generation of a large cluster of correlated particles, which, in turn, represent a basis for quantum information processing devices. Studying the available exactly solvable models clarifies many aspects of the quantum information. In this study, we consider two exactly solvable models in the MQ NMR experiment: (i) the isolated system of two spin- particles (dimers) and (ii) the large system of equivalent spin- particles in a nanopore. The former model is used to describe the quantum correlations and their relations with the MQ NMR coherences, whereas the latter helps one to model the creation and decay of large clusters of correlated particles.


Sign in / Sign up

Export Citation Format

Share Document