THE RIEMANN PROBLEM FOR THE MULTI-PRESSURE EULER SYSTEM

2005 ◽  
Vol 02 (03) ◽  
pp. 745-782 ◽  
Author(s):  
C. CHALONS ◽  
F. COQUEL

We prove the existence and uniqueness of the Riemann solutions to the Euler equations closed by N independent constitutive pressure laws. This model stands as a natural asymptotic system for the multi-pressure Navier–Stokes equations in the regime of infinite Reynolds number. Due to the inherent lack of conservation form in the viscous regularization, the limit system exhibits measure-valued source terms concentrated on shock discontinuities. These non-positive bounded measures, called kinetic relations, are known to provide a suitable tool to encode the small-scale sensitivity in the singular limit. Considering N independent polytropic pressure laws, we show that these kinetic relations can be derived by solving a simple algebraic problem which governs the endpoints of the underlying viscous shock profiles, for any given but prescribed ratio of viscosity coefficient in the viscous perturbation. The analysis based on traveling wave solutions allows us to introduce the asymptotic Euler system in the setting of piecewise Lipschitz continuous functions and to study the Riemann problem.

1958 ◽  
Vol 8 ◽  
pp. 966-974
Author(s):  
H. E. Petschek

Analyses of aerodynamic dissipation in ordinary un-ionized gases are all based upon the Navier-Stokes equations. These equations relate the rate of dissipation to the local gradients in velocity and temperature through the viscosity and heat conduction coefficients. Although it is true that in many flow situations the magnitude of the total dissipation in the gas does not depend on the magnitude of the viscosity coefficient, this coefficient does determine the minimum scale of variations observed in the gas and the form of the Navier-Stokes equations determines the type of phenomena which are observed on a small scale. In order to discuss dissipation in an ionized gas in the presence of a magnetic field, it is therefore necessary to re-examine the derivation of the basic flow equations. This paper attempts to do this for a case of a completely ionized gas and demonstrates that the basic microscopic dissipation mechanism is appreciably different. For example, it is shown that the minimum length in which the properties of the flow field can change noticeably is appreciably less than one mean free path.


2006 ◽  
Vol 16 (09) ◽  
pp. 1469-1504 ◽  
Author(s):  
CHRISTOPHE CHALONS ◽  
FRÉDÉRIC COQUEL

This work aims at numerically approximating the entropy weak solutions of Euler-like systems asymptotically recovered from the multi-pressure Navier–Stokes equations in the regime of an infinite Reynolds number. The nonconservation form of the limit PDE model makes the shock solutions to be sensitive with respect to the underlying small scales. Here we propose to model these small scale effects via a set of generalized jump conditions expressed in terms of the independent internal energies. The interest in considering internal energies stems from the presence of solely first-order nonconservative products by contrast to other variables. These nonconservative products are defined in the now classical sense proposed by Dal Maso, LeFloch and Murat. We show how to enforce the generalized jump conditions at the discrete level with a fairly simple numerical procedure. This method is proved to satisfy a full set of stability estimates and to produce approximate solutions in good agreement with exact Riemann solutions.


Filomat ◽  
2019 ◽  
Vol 33 (16) ◽  
pp. 5355-5373 ◽  
Author(s):  
Meina Sun ◽  
Jie Xin

The Riemann problem for the one-dimensional version of isentropic compressible Euler system for the Chaplygin gas consisting of three scalar equations is considered. It is shown that the Riemann solutions involve only two situations: the combination of three contact discontinuities or a delta shock wave. The generalized Rankine-Hugoniot conditions of delta shock wave are derived and the exact delta shock wave solution including the strength and propagation speed is obtained explicitly. The solutions to the perturbed Riemann problem are constructed globally when the initial data are taken to be the three piecewise constant initial data. The wave interaction problem is extensively investigated and some interesting phenomena are observed. It is shown that the limits of solutions to the perturbed Riemann problem converge to the corresponding ones to the Riemann problem when the perturbation parameter tends to zero.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Heping Wang ◽  
Yanbo Zhang

We discuss the rate of convergence of the Lupasq-analogues of the Bernstein operatorsRn,q(f;x)which were given by Lupas in 1987. We obtain the estimates for the rate of convergence ofRn,q(f)by the modulus of continuity off, and show that the estimates are sharp in the sense of order for Lipschitz continuous functions.


1994 ◽  
Vol 47 (6S) ◽  
pp. S3-S13 ◽  
Author(s):  
Parviz Moin ◽  
Thomas Bewley

A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the Navier-Stokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.


2008 ◽  
Vol 40 (03) ◽  
pp. 651-672 ◽  
Author(s):  
Dominic Schuhmacher ◽  
Aihua Xia

Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅ 1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅ 1 and its induced Wasserstein metric d̅ 2 for point process distributions are given, including examples of useful d̅ 1-Lipschitz continuous functions, d̅ 2 upper bounds for the Poisson process approximation, and d̅ 2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅ 1 in applications.


2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.


1997 ◽  
Vol 40 (1) ◽  
pp. 88-102 ◽  
Author(s):  
M. L. Radulescu ◽  
F. H. Clarke

AbstractRecently, F. H. Clarke and Y. Ledyaev established a multidirectional mean value theorem applicable to lower semi-continuous functions on Hilbert spaces, a result which turns out to be useful in many applications. We develop a variant of the result applicable to locally Lipschitz functions on certain Banach spaces, namely those that admit a C1-Lipschitz continuous bump function.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Pengpeng Ji ◽  
Chun Shen

The global solutions of the perturbed Riemann problem for the Leroux system are constructed explicitly under the suitable assumptions when the initial data are taken to be three piecewise constant states. The wave interaction problems are widely investigated during the process of constructing global solutions with the help of the geometrical structures of the shock and rarefaction curves in the phase plane. In addition, it is shown that the Riemann solutions are stable with respect to the specific small perturbations of the Riemann initial data.


Sign in / Sign up

Export Citation Format

Share Document