EFFECT OF FRACTIONAL PARAMETER ON PLANE WAVES IN A ROTATING ELASTIC MEDIUM UNDER FRACTIONAL ORDER GENERALIZED THERMOELASTICITY

2012 ◽  
Vol 04 (03) ◽  
pp. 1250030 ◽  
Author(s):  
NANTU SARKAR ◽  
ABHIJIT LAHIRI

In ["Theory of fractional order generalized thermoelasticity," Journal of Heat Transfer132, 2010] Youssef has proposed a model in generalized thermoelasticity based on the fractional order time derivatives. The current manuscript is concerned with a two-dimensional generalized thermoelastic coupled problem for a homogeneous isotropic and thermally conducting thermoelastic rotating medium in the context of the above fractional order generalized thermoelasticity with two relaxation time parameters. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The resulting solution is then applied to two concrete problems. The effect of the fractional parameter and the time instant on the variations of different field quantities inside the elastic medium are analyzed graphically in the presence of rotation.

2017 ◽  
Vol 38 (2) ◽  
pp. 101-122 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Ramadan S. Tantawi ◽  
Ebtesam E.M. Eraki

AbstractThe model of the equations of generalized thermoelasticity in a semi-conducting medium with two-temperature is established. The entire elastic medium is rotated with a uniform angular velocity. The formulation is applied under Lord-Schulman theory with one relaxation time. The normal mode analysis is used to obtain the expressions for the considered variables. Also some particular cases are discussed in the context of the problem. Numerical results for the considered variables are obtained and illustrated graphically. Comparisons are also made with the results predicted in the absence and presence of rotation as well as two-temperature parameter.


2017 ◽  
Vol 9 (3) ◽  
pp. 722-741 ◽  
Author(s):  
Ahmed. E. Abouelregal

AbstractIn the present work concentrated on the two-dimensional problem of generalized thermoelasticity for a fiber-reinforced anisotropic thick plate under initial stress. Using generalized thermoelasticity theory with fractional order heat conduction, the problem has been solved by a normal mode analysis. The effect of hydrostatic initial stresses and fractional order parameter is shown graphically on the distributions of the temperature, displacement and thermal stress components. It is found from the graphs that the initial stress and the fractional parameter significantly influences the varieties of field amounts.


2014 ◽  
Vol 92 (5) ◽  
pp. 425-434 ◽  
Author(s):  
Sunita Deswal ◽  
Renu Yadav

The dynamical interactions caused by a line heat source moving inside a homogeneous isotropic thermo-microstretch viscoelastic half space, whose surface is subjected to a thermal load, are investigated. The formulation is in the context of generalized thermoelasticity theories proposed by Lord and Shulman (J. Mech. Phys. Solid, 15, 299 (1967)) and Green and Lindsay (Thermoelasticity, J. Elasticity, 2, 1 (1972)). The surface is assumed to be traction free. The solutions in terms of displacement components, mechanical stresses, temperature, couple stress, and microstress distribution are procured by employing the normal mode analysis. The numerical estimates of the considered variables are obtained for an aluminium–epoxy material. The results obtained are demonstrated graphically to show the effect of moving heat source and viscosity on the displacement, stresses, and temperature distribution.


2017 ◽  
Vol 13 (2) ◽  
pp. 331-346 ◽  
Author(s):  
Mohamed Ibrahim A. Othman ◽  
Mohamed Ibrahim M. Hilal

Purpose The purpose of this paper is to study the effect of rotation and initial stress on magneto-thermoelastic material with voids heated by a laser pulse heating. Design/methodology/approach The analytical method used was the normal mode analysis technique. Findings Numerical results for the physical quantities were presented graphically and analyzed. The graphical results indicate that the effect of rotation, initial stress and magnetic fields are observable physical effects on the thermoelastic material with voids heated by a laser pulse. Comparisons are made with the results in the absence and the presence of the physical operators, also at various times. Originality/value In the present work, the authors shall investigate the effect of the rotation, initial stress, magnetic field and laser pulse on thermoelastic material with voids subjected to a laser pulse heating acting as a thermal shock. A comparison is also made between the two types (types II and III) of Green-Naghdi theory in the absence and the presence of the physical operators. Such problems are very important in many dynamical systems.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Baljeet Singh

The governing equations for generalized thermoelasticity of a mixture of an elastic solid and a Newtonian fluid are formulated in the context of Lord-Shulman and Green-Lindsay theories of generalized thermoelasticity. These equations are solved to show the existence of three coupled longitudinal waves and two coupled transverse waves, which are dispersive in nature. Reflection from a thermally insulated stress-free surface is considered for incidence of coupled longitudinal wave. The speeds and reflection coefficients of plane waves are computed numerically for a particular model.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kh. Lotfy ◽  
Wafaa Hassan

The theory of two-temperature generalized thermoelasticity based on the theory of Youssef is used to solve boundary value problems of two-dimensional half-space. The governing equations are solved using normal mode method under the purview of the Lord-Şhulman (LS) and the classical dynamical coupled theory (CD). The general solution obtained is applied to a specific problem of a half-space subjected to one type of heating, the thermal shock type. We study the influence of rotation on the total deformation of thermoelastic half-space and the interaction with each other under the influence of two temperature theory. The material is homogeneous isotropic elastic half-space. The methodology applied here is use of the normal mode analysis techniques that are used to solve the resulting nondimensional coupled field equations for the two theories. Numerical results for the displacement components, force stresses, and temperature distribution are presented graphically and discussed. The conductive temperature, the dynamical temperature, the stress, and the strain distributions are shown graphically with some comparisons.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Muhammad Rafiq ◽  
Baljeet Singh ◽  
Samreen Arifa ◽  
Muhammad Nazeer ◽  
Muhammad Usman ◽  
...  

Abstract The current work analyzes the transmission behavior of plane harmonic waves in an isotropic medium. The observation is made for homogeneous type solid in the context of generalized dual phase lag model of thermoelasticity. Concept micro-temperature, where the microelements have different temperatures has also been considered. The basic focus of thework is to predict the influence of initially applied magnetic field on plane waves through the elastic solid. We have made an attempt to find exact solution of the problem using an analytical technique of a normal mode analysis method. The theoretical results are obtained for a generalized solid in order to test the numerical calculation of a magnesium crystal. It is found that the magnetic field reduces the strength of the attenuation factor.


2007 ◽  
Vol 353-358 ◽  
pp. 3018-3021
Author(s):  
Ying Pan ◽  
Zi Hou Zhang ◽  
Li Hou Liu

Based on Green and Lindsay’s generalized thermoelasticity theory with two relaxation times, a two-dimensional coupled problem in electromagneto-thermoelasticity for a rotating half-space solid whose surface is subjected to a heat is studied in this paper. The normal mode analysis is used to obtain the analytical expressions for the considered variables. It can be found electromagneto-thermoelastic coupled effect in the medium, and it also can be found that rotation acts to significantly decrease the magnitude of the real part of displacement and stress and insignificantly affect the magnitude of temperature and induced magnetic field.


2016 ◽  
Vol 16 (07) ◽  
pp. 1550033 ◽  
Author(s):  
Mohamed I. A. Othman ◽  
Montaser Fekry

The present paper is concerned with the investigation of disturbances in a homogeneous, isotropic, generalized thermo-viscoelastic diffusion material with voids under the influence of magnetic field. The formulation is applied to the generalized thermoelasticity theory under the Lord–Shulman and the classical dynamical coupled theories. The analytical expressions for the physical quantities are obtained in the physical domain by using the normal mode analysis. These expressions are calculated numerically for a specific material and explained graphically. Comparisons are made with the results predicted by the Lord–Shulman and the coupled theories in the presence and absence of the magnetic field and diffusion.


Sign in / Sign up

Export Citation Format

Share Document