A Three-Dimensional Model of Line-Contact Elastohydrodynamic Lubrication for Heterogeneous Materials with Inclusions

2016 ◽  
Vol 08 (02) ◽  
pp. 1650014 ◽  
Author(s):  
Kun Zhou ◽  
Qingbing Dong

This paper develops a three-dimensional (3D) model for a heterogeneous half-space with inclusions distributed periodically beneath its surface subject to elastohydrodynamic lubrication (EHL) line-contact applied by a cylindrical loading body. The model takes into account the interactions between the loading body, the fluid lubricant and the heterogeneous half-space. In the absence of subsurface inclusions, the surface contact pressure distribution, the half-space surface deformation and the lubricant film thickness profile are obtained through solving a unified Reynolds equation system. The inclusions are homogenized according to Eshelby’s equivalent inclusion method (EIM) with unknown eigenstrains to be determined. The disturbed half-space surface deformations induced by the subsurface inclusions or eigenstrains are iteratively introduced into the lubricant film thickness until the surface deformation finally converges. Both time-independent smooth surface contact and time-dependent rough surface contact are considered for the lubricated contact problem.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Keying Chen ◽  
Liangcai Zeng ◽  
Juan Chen ◽  
Xianzhong Ding

A numerical solution for line contact elastohydrodynamic lubrication (EHL) occurring on the rough surface of heterogeneous materials with a group of particles is presented in this study. The film thickness disturbance caused by particles and roughness is considered into the solution system, and the film pressure between the contact gap generated by the particles and the surface roughness is obtained through a unified Reynold equation system. The inclusions buried in the matrix are made equivalent to areas with the same material as that of the matrix through Eshelby’s equivalent inclusion method and the roughness is characterized by related functions. The results present the effects of different rough topographies combined with the related parameters of the particles on the EHL performance, and the minimum film thickness distribution under different loads, running speeds, and initial viscosities are also investigated. The results show that the roughness morphology and the particles can affect the behavior of the EHL, the traction force on a square rough surface is smaller, and the soft particles have more advantages for improving the EHL performance.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


1993 ◽  
Vol 115 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Kyung-Hoon Kim ◽  
Farshid Sadeghi

A numerical study of Newtonian thermal elastohydrodynamic lubrication (EHD) of rolling/sliding point contacts has been conducted. The two-dimensional Reynolds, elasticity and the three-dimensional energy equations were solved simultaneously to obtain the pressure, film thickness and temperature distribution within the lubricant film. The control volume approach was employed to discretize the differential equations and the multi-level multi-grid technique was used to simultaneously solve them. The discretized equations, as well as the nonorthogonal coordinate transformation used for the solution of the energy equation, are described. The pressure, film thickness and the temperature distributions, within the lubricant film at different loads, slip conditions and ellipticity parameters are presented.


2003 ◽  
Vol 125 (3) ◽  
pp. 533-542 ◽  
Author(s):  
Jian W. Choo ◽  
Romeo P. Glovnea ◽  
Andrew V. Olver ◽  
Hugh A. Spikes

The Spacer Layer Imaging method has been used to investigate the influence of three-dimensional roughness features on the thickness and shape of elastohydrodynamic (EHL) films. An array of near-hemispherical bumps was employed to represent asperities. A micro-EHL film developed at the bumps whose orientation depended on that of the inlet boundary at the location at which the bump had entered the contact. Rolling-sliding conditions induced a micro-EHL film with a classical horseshoe shape at the bumps. The flow of lubricant around the bumps appeared to differ between thin and thick films.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Zhanjiang Wang ◽  
Dong Zhu ◽  
Qian Wang

Solid materials forming the boundaries of a lubrication interface may be elastoplastic, heat treated, coated with multilayers, or functionally graded. They may also be composites reinforced by particles or have impurities and defects. Presented in this paper is a model for elastohydrodynamic lubrication interfaces formed with these realistic materials. This model considers the surface deformation and subsurface stresses influenced by material inhomogeneities, where the inhomogeneities are replaced by inclusions with properly determined eigenstrains by means of the equivalent inclusion method. The surface displacement or deformation caused by inhomogeneities is introduced to the film thickness equation. The stresses are the sum of those caused by the fluid pressure and the eigenstrains. The lubrication of a material with a single inhomogeneity, multiple inhomogeneities, and functionally graded coatings are analyzed to reveal the influence of inhomogeneities on film thickness, pressure distribution, and subsurface stresses.


Author(s):  
Xingnan Zhang ◽  
Romeo Glovnea

Rolling bearings are the second most used machine components. They work in what it is called elastohydrodynamic lubrication regime. The geometry of rolling element bearings makes the direct measurement of the lubricant film thickness a challenging task. Optical interferometry is widely used in laboratory conditions for studying elastohydrodynamic lubrication however it cannot be used directly in rolling element bearings thus the only suitable methods are electrical techniques. Of these, film thickness measurement based on electrical capacitance of the contacts has been used in the past by a number of authors. One of the limitations of the capacitance method, when used in rolling bearings, is that it cannot distinguish between the contacts of every rolling element and raceway on one hand and on the other between the inner and outer ring contacts. In the present study the authors used an original test rig which can measure the film thickness for only one ball and separately for the inner and outer rings of a radial ball bearing. This paper thus shows for the first-time results of the lubricant film thickness, at the inner and outer raceways, in grease lubricated rolling bearings.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuchuan Liu ◽  
Dong Zhu

Elastohydrodynamic lubrication (EHL) is a common mode of fluid-film lubrication in which many machine elements operate. Its thermal behavior is an important concern especially for components working under extreme conditions such as high speeds, heavy loads, and surfaces with significant roughness. Previous thermal EHL (TEHL) studies focused only on the cases with smooth surfaces under the full-film lubrication condition. The present study intends to develop a more realistic unified TEHL model for point contact problems that is capable of simulating the entire transition of lubrication status from the full-film and mixed lubrication all the way down to boundary lubrication with real machined roughness. The model consists of the generalized Reynolds equation, elasticity equation, film thickness equation, and those for lubricant rheology in combination with the energy equation for the lubricant film and the surface temperature equations. The solution algorithms based on the improved semi-system approach have demonstrated a good ability to achieve stable solutions with fast convergence under severe operating conditions. Lubricant film thickness variation and temperature rises in the lubricant film and on the surfaces during the entire transition have been investigated. It appears that this model can be used to predict mixed TEHL characteristics in a wide range of operating conditions with or without three-dimensional (3D) surface roughness involved. Therefore, it can be employed as a useful tool in engineering analyses.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract We design a pattern of microtexture features to increase hydrodynamic pressure and lubricant film thickness in a hard-on-soft bearing. We use a soft elastohydrodynamic lubrication model to evaluate the effect of microtexture design parameters and bearing operating conditions on the resulting lubricant film thickness and find that the maximum lubricant film thickness occurs with a texture density between 10% and 40% and texture aspect ratio between 1% and 14%, depending on the bearing load and operating conditions. We show that these results are similar to those of hydrodynamic textured bearing problems because the lubricant film thickness is almost independent of the stiffness of the bearing surfaces in full-film lubrication.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jian W. Choo ◽  
Andrew V. Olver ◽  
Hugh A. Spikes ◽  
Marie-Laure Dumont ◽  
Eustathios Ioannides

A novel experimental method has been developed to investigate how model asperities, on opposing surfaces in an elastohydrodynamic (EHD) contact, interact to influence the lubricant film distribution. This technique allows direct measurements of lubricant film thickness during asperity-asperity collision. A surface having a single transverse ridge asperity was rubbed against a second surface having three different roughness features, a transverse ridge, multiple transverse ridges, and an array of hemispherical bumps to study the resultant micro-EHD films. This work reveals how the film thickness is greatly reduced when the peaks of opposing asperities coincide, and how asperities can combine to cause a larger volume of lubricant to be entrapped at their leading edges. The new technique described shows considerable promise for the study of mixed lubrication.


Sign in / Sign up

Export Citation Format

Share Document