The Combination of Multi-Step Differential Transformation Method and Finite Element Method in Vibration Analysis of Non-Prismatic Beam

2017 ◽  
Vol 09 (01) ◽  
pp. 1750010 ◽  
Author(s):  
Ryszard Hołubowski ◽  
Kamila Jarczewska

The paper presents a new algorithm being the combination of multi-step differential transformation method (MsDTM) and finite element method (FEM) as a powerful tool for solving variety dynamic problems. The proposed algorithm, named as differential transformation finite element method (DTFEM), transforms partial differential equation into a set of recursive algebraic equations. The final form of a solution is a piecewise function which in general case may be a symbolic function. High effectiveness and accuracy of DTFEM is demonstrated on the example of forced vibrations of non-prismatic Euler–Bernoulli beam. Computed time histories of displacements, velocities and accelerations are highly consistent with results obtained by Newmark method.

Author(s):  
Dominic R. Jackson ◽  
S. Olutunde Oyadiji

The free vibration characteristics of a rotating tapered Rayleigh beam is analysed in this study. First, the strain-displacement relationship for the rotating beam is formulated and used to derive the kinetic and strain energies in explicit analytical form. Second, Hamilton’s variational principle is used to derive the governing differential equation of motion and the associated boundary conditions. Third, the Differential Transformation Method (DTM) is applied to reduce the governing differential equations of motion and the boundary conditions to a set of algebraic equations from which the frequency equation is derived. Next, a numerical algorithm implemented in the software package Mathematica is used to compute the natural frequencies of vibration for a few paired combinations of clamped, pinned and free end conditions of the beam. Also, the variation of the natural frequencies of vibration with respect to variations in the rotational speed, hub radius, taper ratio and the slenderness ratio is studied. The results obtained from the Bresse-Rayleigh theory are compared with results obtained from the Bernoulli-Euler and Timoshenko theories to demonstrate the accuracy and relevance of their application.


2012 ◽  
Vol 157-158 ◽  
pp. 476-483
Author(s):  
Zhi Feng Liu ◽  
Chun Hua Guo ◽  
Li Gang Cai ◽  
Wen Tong Yang ◽  
Zhi Min Zhang

In this paper, we compare the Differential transformation method and Adomian decomposition method to solve Euler-Bernoulli Beam vibration problems. The natural frequencies and mode shapes of the clamped-free uniform Euler-Bernoulli equation are calculated using the two methods. The Adomian decomposition method avoids the difficulties and massive computational work inherent in Differential transformation method by determining the very rapidly convergent analytic solutions directly. We found the solution between the two methods to be quite close. According to calculation of eigenvalues, natural frequencies and mode shapes, we compare the convergence of Differential transformation method and Adomian decomposition method. The two methods can be alternative ways to solve linear and nonlinear higher-order initial value problems.


2012 ◽  
Vol 24 (2) ◽  
pp. 226-239 ◽  
Author(s):  
Gang Wang

Single-degree-of-freedom lumped parameter model, conventional finite element method, and distributed parameter model have been developed to design, analyze, and predict the performance of piezoelectric energy harvesters with reasonable accuracy. In this article, a spectral finite element method for bimorph piezoelectric beam energy harvesters is developed based on the Timoshenko beam theory and the Euler–Bernoulli beam theory. Linear piezoelectric constitutive and linear elastic stress/strain models are assumed. Both beam theories are considered in order to examine the validation and applicability of each beam theory for a range of harvester sizes. Using spectral finite element method, a minimum number of elements is required because accurate shape functions are derived using the coupled electromechanical governing equations. Numerical simulations are conducted and validated using existing experimental data from the literature. In addition, parametric studies are carried out to predict the performance of a range of harvester sizes using each beam theory. It is concluded that the Euler–Bernoulli beam theory is sufficient enough to predict the performance of slender piezoelectric beams (slenderness ratio > 20, that is, length over thickness ratio > 20). In contrast, the Timoshenko beam theory, including the effects of shear deformation and rotary inertia, must be used for short piezoelectric beams (slenderness ratio < 5).


2020 ◽  
Vol 26 (1) ◽  
pp. 65-71
Author(s):  
Godwin C.E. Mbah ◽  
Kingsley Kelechi Ibeh

In this paper, we applied the Galerkin Finite Element Method to solve a damped, externally forced, second order ordinary differential equation with cubic nonlinearity known as the Duffing Equation. The Galerkin method uses the functional minimization technique which sets the equation in systems of algebraic equations to be solved. Various simulation on the effect of change on some parametric values of the Duffing equation are shown. Keywords: Galerkin Finite Element Method, stiffness matrix, Duffing Equation, shape functions, basis functions, weight functions.


1968 ◽  
Vol 19 (4) ◽  
pp. 357-367 ◽  
Author(s):  
A. C. Walker ◽  
D. G. Hall

SummaryThe Rayleigh-Ritz finite element method is used to obtain an approximate solution of the exact non-linear energy functional describing the large deflection bending behaviour of a simply-supported inextensible uniform beam subjected to point loads. The solution of the non-linear algebraic equations resulting from the use of this method is effected, using three different techniques, and comparisons are made regarding the accuracy and computing effort involved in each. A description is given of an experimental investigation of the problem and comparison of the results with those of the numerical method, and of the available exact continuum analyses, indicates that the numerical method provides satisfactory predictions for the non-linear beam behaviour for deflections up to one quarter of the beam’s length.


Author(s):  
Y. L. Kuo ◽  
W. L. Cleghorn

This paper presents a new method called the curvature-based finite element method to solve Euler-Bernoulli beam problems. An approximated curvature distribution is selected first, and then the approximated transverse displacement is determined by double integrations. Four numerical examples demonstrate the validity of the method, and the results show that the errors are smaller than those generated by a conventional method, the displacement-based finite element method, for comparison based on the same number of degrees of freedom.


2013 ◽  
Vol 419 ◽  
pp. 273-279 ◽  
Author(s):  
Zhen Gang Wang

Stepped distributed dynamic systems are widely used in the engineering fields, and the dynamic characteristics analysis of them is very important. In this paper, the axial vibration of a stepped bar consisting of two uniform sections is studied, in order to solve the dynamic equation, the differential transformation method is used, the governing differential equation and the boundary conditions of the bar become simple algebraic equations. Doing some simple algebraic operations for these equations, the closed form solution of natural frequency, mode shape and the dynamic response can be obtained. Comparison the results obtained by the differential transformation method and finite element method, excellent agreement is achieved, and the effects of the stiffness of spring is discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document