scholarly journals On Electrical Spiking of Ganoderma Resinaceum

Author(s):  
Andrew Adamatzky ◽  
Antoni Gandia

Fungi exhibit action-potential like spiking activity. Up to date, most electrical activity of oyster fungi has been characterized in sufficient detail. It remains unclear if there are any patterns of electrical activity specific only for a certain set of species or if all fungi share the same “language” of electrical signalling. We use pairs of differential electrodes to record extracellular electrical activity of the antler-like sporocarps of the polypore fungus Ganoderma resinaceum. The patterns of the electrical activity are analyzed in terms of frequency of spiking and parameters of the spikes. The indicators of the propagation of electrical activity are also highlighted.

2021 ◽  
Author(s):  
Andrew Adamatzky ◽  
Antoni Gandia

Fungi exhibit action-potential like spiking activity. Up to date most electrical activity of oyster fungi has been characterised in sufficient detail. It remains unclear if there are any patterns of electrical activity specific only for a certain set of species or if all fungi share the same 'language' of electrical signalling. We use pairs of differential electrodes to record extracellular electrical activity of the antler-like sporocarps of the polypore fungus Ganoderma resinaceum. The patterns of the electrical activity are analysed in terms of frequency of spiking and parameters of the spikes. The indicators of the propagation of electrical activity are also highlighted.


2021 ◽  
Author(s):  
Andrew Adamatzky ◽  
Antoni Gandia

Abstract Electrical activity of fungus Pleurotus ostreatus is characterised by slow (hours) irregular waves of baseline potential drift and fast (minutes) action potential likes spikes of the electrical potential. An exposure of the mycelium colonised substrate to a chloroform vapour lead to several fold decrease of the baseline potential waves and increase of their duration. The chloroform vapour also causes either complete cessation of spiking activity or substantial reduction of the spiking frequency. Removal of the chloroform vapour from the growth containers leads to a gradual restoration of the mycelium electrical activity.


2021 ◽  
Author(s):  
Andrew Adamatzky ◽  
Antoni Gandia

Electrical activity of fungus Pleurotus ostreatus is characterised by slow (hours) irregular waves of baseline potential drift and fast (minutes) action potential likes spikes of the electrical potential. An exposure of the mycelium colonised substrate to a chloroform vapour lead to several fold decrease of the baseline potential waves and increase of their duration. The chloroform vapour also causes either complete cessation of spiking activity or substantial reduction of the spiking frequency. Removal of the chloroform vapour from the growth containers leads to a gradual restoration of the mycelium electrical activity.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew Adamatzky ◽  
Antoni Gandia

AbstractElectrical activity of fungus Pleurotus ostreatus is characterised by slow (h) irregular waves of baseline potential drift and fast (min) action potential likes spikes of the electrical potential. An exposure of the myceliated substrate to a chloroform vapour lead to several fold decrease of the baseline potential waves and increase of their duration. The chloroform vapour also causes either complete cessation of spiking activity or substantial reduction of the spiking frequency. Removal of the chloroform vapour from the growth containers leads to a gradual restoration of the mycelium electrical activity.


1980 ◽  
Vol 60 (2) ◽  
pp. 293-301 ◽  
Author(s):  
L. BUENO ◽  
J. FIORAMONTI ◽  
E. GEUX ◽  
Y. RAISSIGUIER

The electrical activity of the gastrointestinal tract and gallbladder was recorded in four sheep fed a Mg-deficient diet during 10 to 15 days. The mitigating effect of intravenous infusions of MgCl2 was tested at the end of the experimental period in animals presenting hypomagnesemia. Motility of the reticulo-rumen remained unchanged in Mg-deficient sheep except that there was no postprandial increased frequency of contractions. By contrast, the contractions of gallbladder, cecum and proximal colon were reduced in both amplitude and frequency. The amplitude but not the frequency of the antro-duodenal slow-waves was reduced. The amplitude of the regular spiking activity of the small intestine was reduced as well as the number of complexes produced per day. The activity of the spiral colon was correlated to the blood magnesium concentrations but Mg infusion was unable to restore immediately the motor profile of the rest of the gut to its intitial level. This was done within 2–3 days by changes in the diet in three of the four animals. It is concluded that the motility of the whole digestive tract, including the reticulo-rumen, is modified on a Mg-deficient diet and that hypomagnesemia, involved in the atony of the spiral colon, is only one of the factors responsible for the hypomotility.


2017 ◽  
Vol 313 (4) ◽  
pp. H810-H827 ◽  
Author(s):  
C. M. Kofron ◽  
T. Y. Kim ◽  
M. E. King ◽  
A. Xie ◽  
F. Feng ◽  
...  

Cardiac fibroblasts (CFs) are known to regulate cardiomyocyte (CM) function in vivo and in two-dimensional in vitro cultures. This study examined the effect of CF activation on the regulation of CM electrical activity in a three-dimensional (3-D) microtissue environment. Using a scaffold-free 3-D platform with interspersed neonatal rat ventricular CMs and CFs, Gq-mediated signaling was selectively enhanced in CFs by Gαq adenoviral infection before coseeding with CMs in nonadhesive hydrogels. After 3 days, the microtissues were analyzed by signaling assay, histological staining, quantitative PCR, Western blots, optical mapping with voltage- or Ca2+-sensitive dyes, and microelectrode recordings of CF resting membrane potential (RMPCF). Enhanced Gq signaling in CFs increased microtissue size and profibrotic and prohypertrophic markers. Expression of constitutively active Gαq in CFs prolonged CM action potential duration (by 33%) and rise time (by 31%), prolonged Ca2+ transient duration (by 98%) and rise time (by 65%), and caused abnormal electrical activity based on depolarization-induced automaticity. Constitutive Gq activation in CFs also depolarized RMPCF from –33 to −20 mV and increased connexin 43 and connexin 45 expression. Computational modeling confers that elevated RMPCF and increased cell-cell coupling between CMs and CFs in a 3-D environment could lead to automaticity. In conclusion, our data demonstrate that CF activation alone is capable of altering action potential and Ca2+ transient characteristics of CMs, leading to proarrhythmic electrical activity. Our results also emphasize the importance of a 3-D environment where cell-cell interactions are prevalent, underscoring that CF activation in 3-D tissue plays a significant role in modulating CM electrophysiology and arrhythmias. NEW & NOTEWORTHY In a three-dimensional microtissue model, which lowers baseline activation of cardiac fibroblasts but enables cell-cell, paracrine, and cell-extracellular matrix interactions, we demonstrate that selective cardiac fibroblast activation by enhanced Gq signaling, a pathophysiological trigger in the diseased heart, modulates cardiomyocyte electrical activity, leading to proarrhythmogenic automaticity.


2015 ◽  
Vol 12 (102) ◽  
pp. 20141036 ◽  
Author(s):  
Elisa Masi ◽  
Marzena Ciszak ◽  
Luisa Santopolo ◽  
Arcangela Frascella ◽  
Luciana Giovannetti ◽  
...  

In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour.


2014 ◽  
Vol 306 (11) ◽  
pp. R823-R836 ◽  
Author(s):  
Eric Lin ◽  
Amanda Ribeiro ◽  
Weiguang Ding ◽  
Leif Hove-Madsen ◽  
Marinko V. Sarunic ◽  
...  

The zebrafish ( Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18–28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ∼40%, and atrial and ventricular APD50 increased by a factor of ∼3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute temperature change. In conclusion, this study describes a preparation enabling the in-depth analysis of transmembrane potential dynamics in whole zebrafish hearts. Because the zebrafish offers some critical advantages over the murine model for cardiac electrophysiology, optical mapping studies utilizing zebrafish offer insightful information into the understanding and treatment of human cardiac arrhythmias, as well as serving as a model for other teleosts.


1962 ◽  
Vol 15 (1) ◽  
pp. 69 ◽  
Author(s):  
GP Findlay

Experiments are described in which a "voltage� clamping" technique has been applied to large ecorticate internodal cells of the freshwater alga Nitella. In this technique, a feedback circuit is used to change the potential difference between the vacuole of the cell and the external medium to some predetermined level and maintain it as close as possible to this level during the electrical activity of the cell. It is shown that the main factor in the phenomena of potential change and current flow, during the initial stages of the action potential in Nitella, is a tran-sient increase in the permeability of the cell membrane to calcium ions, and a consequent flow of these ions into the cell from the external medium.


Sign in / Sign up

Export Citation Format

Share Document