A COST-EFFECTIVE MAGNETIC PHOTOCATALYST PALYGORSKITE–TiO2–FexOy WITH EXCELLENT PERFORMANCE FOR DYE PHOTODEGRADATION UNDER VISIBLE LIGHT

NANO ◽  
2014 ◽  
Vol 09 (06) ◽  
pp. 1450063
Author(s):  
JIAHUI ZHANG ◽  
LILI ZHANG ◽  
JIN HUANG ◽  
SHOUYONG ZHOU ◽  
HAIQUN CHEN ◽  
...  

Palygorskite (denoted as Pal) was used as an economical carrier of hybrid photocatalyst TiO 2– Fe x O yvia an in situ depositing technique (marked as Pal– TiO 2– Fe x O y). The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), brunner-emmet-teller (BET) measurements, X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectra measurements. Results showed that TiO 2– Fe x O y composite particles with average size of about 10 nm were loaded onto the Pal fibers' surface. Fe x O y acted not only as magnetic source but also took part in the formation of TiO 2– Fe x O y heterojunction structure, which resulted in the obvious absorption in visible light region for the obtained Pal– TiO 2– Fe x O y composite photocatalyst. The obtained Pal– TiO 2– Fe x O y shows excellent photocatalytic activity toward photodegradation of Methyl orange (MO) under visible light irradiation and the degradation ratio reached 94% within 180 min. Moreover, Pal– TiO 2– Fe x O y could be readily recovered from the reaction solution by the magnet. Possible mechanism for the enhancement was also proposed.

NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650035 ◽  
Author(s):  
Lin Ma ◽  
Limei Xu ◽  
Xuyao Xu ◽  
Xiaoping Zhou ◽  
Lingling Zhang

Sulfur-doped SnO2 nanoparticles with ultrafine sizes have been successfully prepared by a one-pot hydrothermal method. The obtained samples are characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), thermogravimetric (TG), analyzer UV-Vis spectroscopy, photoluminescence (PL) and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the doping level of sulfur element as well as the bandgaps of SnO2 can be controlled to a certain extent by varying the amount of L-cysteine (L-cys). When evaluated as photocatalysts in the degradation of rhodamine B (RhB) and reduction of Cr(VI) under visible light region, the resultant sulfur-doped SnO2 nanoparticles demonstrate obviously enhanced photocatalytic activities due to the markedly improved visible light response and effective separation of the photo-generated electron–hole pairs.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 672 ◽  
Author(s):  
Zuzanna Bielan ◽  
Agnieszka Sulowska ◽  
Szymon Dudziak ◽  
Katarzyna Siuzdak ◽  
Jacek Ryl ◽  
...  

In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation and reuse of the nanometer-sized photocatalyst from the suspension after the treatment process. The obtained Fe3O4@SiO2/d-TiO2-Pt/Cu photocatalysts were characterized by X-ray diffractometry (XRD) and specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Further, the mechanism of phenol degradation and the role of four oxidative species (h+, e−, •OH, and •O2−) in the studied photocatalytic process were investigated.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3327
Author(s):  
Porntipa Pooseekheaw ◽  
Winai Thongpan ◽  
Arisara Panthawan ◽  
Ekkapong Kantarak ◽  
Wattikon Sroila ◽  
...  

Porous V2O5/TiO2 nanoheterostructure films with different atomic ratios of Ti/V (4:1, 2:1, 1:1, and 1:2) were synthesized by a sparking method for the first time. The sparking method, which is a simple and cost-effective process, can synthesize highly porous and composite films in one step. Field-emission scanning electron microscope (FE-SEM) images revealed the porosity morphology of all prepared samples. V2O5/TiO2 nanoheterostructure films were confirmed by Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). The secondary particle size and band gap of the samples were highly correlated to the V2O5 proportion, resulting in enhanced visible-light absorbance. V2O5/TiO2 nanoheterostructure films at an atomic ratio of 1:1 showed the highest photocatalytic performance, which improved the degradation rate up to 24% compared to pure TiO2 film. It is believed that the formed nanoheterostructure and greater portion of V4+ ions are reflected by this ratio.


2007 ◽  
Vol 124-126 ◽  
pp. 1229-1232 ◽  
Author(s):  
Myoung Seok Sung ◽  
Yoon Bok Lee ◽  
Yong Jin Kim ◽  
Yang Do Kim

Cadmium selenide(CdSe) nanoparticles were prepared in the aqueous solution containing isopropyl alcohol by the ultrasonic irradiation at room temperature. The cadmium chloride (CdCl2) and sodium selenosulfate (Na2SeSO3) were used as the cadmium and selenium source, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption spectra and PL spectra were used to characterize the CdSe nanoparticles. XRD analysis revealed the formation of cubic structure CdSe. TEM images showed aggregated CdSe nanoparticles with the size of nanometer scale. Average size of CdSe nanoparticles were about 3.9, 5.0 and 5.1nm with sonication time of 6, 30 and 40 minutes, respectively. The surface emission became less intensive and shifted to red with increasing irradiation time. This paper presents the effects of ultrasonic on the formation of CdSe nanoparticles and its characteristics.


2013 ◽  
Vol 860-863 ◽  
pp. 907-910
Author(s):  
Xiao Xia Lin ◽  
Jia Liu ◽  
De Gang Fu

B-doped TiO2nanotube arrays (B-TNTs) were synthesized by anodization method combined with dip-calcination technique. The physicochemical properties and surface morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectrum (DRS). Methyl blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of B-TNTs under visible light irradiation. The results show B-TNTs shifts the absorption edge of TiO2nanotube arrays to the visible light region and B-TNTs displays higher photocatalytic activity compared with undoped TNTs.


2021 ◽  
Author(s):  
Yu Fan ◽  
Yan-ning Yang ◽  
Chen Ding

Abstract The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence (PL) techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50% to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron-hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. The photocatalytic mechanism was proposed through the active matter capture experiment.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2019 ◽  
Vol 79 (8) ◽  
pp. 1494-1502 ◽  
Author(s):  
Yongzheng Duan ◽  
Haibo Yao ◽  
Jing Li ◽  
Xili Shang ◽  
Dongmei Jia ◽  
...  

Abstract Bi2O2CO3 modified graphitic carbon nitride (g-C3N4) nanosheets were prepared by a simple one-pot synthetic strategy. In the presence of ammonium nitrate, different mass ratios of bismuth nitrate/melamine were used to fabricate these catalysts, which were characterized by X-ray diffraction (XRD), N2-physisorption, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis analysis, and photoluminescence (PL). The catalytic properties of composites were evaluated by photodegrading tetracycline hydrochloride (TC) under visible light irradiation. Among these catalysts, Bi2O2CO3(1.5)/g-C3N4 showed the highest catalytic activity, which was more than 16 times greater than the pristine g-C3N4 material. The improved photocatalytic properties of Bi2O2CO3/g-C3N4 may be due to the formation of a heterojunction between Bi2O2CO3 and g-C3N4, leading to the effective separation of photo-induced carriers and the enhanced absorption of visible light. Furthermore, the Bi2O2CO3/g-C3N4 composites had considerable catalytic stability, which was a key element for their potential applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Ksenia O. Potapenko ◽  
Anna Yu. Kurenkova ◽  
Andrey V. Bukhtiyarov ◽  
Evgeny Yu. Gerasimov ◽  
Svetlana V. Cherepanova ◽  
...  

A series of solid solutions of cadmium and manganese sulfides, Cd1−xMnxS (x = 0–0.35), and composite photocatalysts, CdS-β-Mn3O4-MnOOH, were synthesized by precipitation with sodium sulfide from soluble cadmium and manganese salts with further hydrothermal treatment at 120 °C. The obtained photocatalysts were studied by the X-ray diffraction method (XRD), UV-vis diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N2 low temperature adsorption. The photocatalysts were tested in hydrogen production using a Na2S/Na2SO3 aqueous solution under visible light (λ = 450 nm). It was shown for the first time that both kinds of photocatalysts possess high activity in hydrogen evolution under visible light. The solid solution Cd0.65Mn0.35S has an enhanced photocatalytic activity due to its valence and conduction band position tuning, whereas the CdS-β-Mn3O4-MnOOH (40–60 at% Mn) samples were active due to ternary heterojunction formation. Further, the composite CdS-β-Mn3O4-MnOOH photocatalyst had much higher stability in comparison to the Cd0.65Mn0.35S solid solution. The highest activity was 600 mmol g−1 h−1, and apparent quantum efficiency of 2.9% (λ = 450 nm) was possessed by the sample of CdS-β-Mn3O4-MnOOH (40 at% Mn).


Sign in / Sign up

Export Citation Format

Share Document