Synthesis of CeO2/e-HTiNbO5 Nanocomposite and Its Application for Photocatalytic Oxidation Desulfurization

NANO ◽  
2016 ◽  
Vol 11 (02) ◽  
pp. 1650018 ◽  
Author(s):  
Yuanjiao Zhang ◽  
Ningning Wang ◽  
Jie He ◽  
Liangguo Da ◽  
Zhong Li

Nanoscaled CeO2/e-HTiNbO5 composite was assembled by a facile process using colloidal TiNbO[Formula: see text] (e-HTiNbO5) nanosheet and CeO2 colloid as precursors at room temperature. The nanosheet e-HTiNbO5 was obtained through proton-exchange and exfoliation process from its parent KTiNbO5. The microstructures and properties of the as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Laser Raman spectroscopy (LRS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS), etc. The photocatalytic activity of the obtained nanocomposite is evaluated by the adsorption and photocatalytic oxidation of ethyl mercaptan (EM) under natural light irradiation. The results show that CeO2 nanoparticles are dispersed uniformly on the surface of e-HTiNbO5 and the layered structure of e-HTiNbO5 nanosheet maintains integrity. The interaction between dispersed CeO2 particles and e-HTiNbO5 results in lower bandgap compared to its precursors, and the photocatalytic activity of CeO2/e-HTiNbO5 are enhanced under natural light irradiation.

NANO ◽  
2017 ◽  
Vol 12 (08) ◽  
pp. 1750100 ◽  
Author(s):  
Jie Li ◽  
Lei Xu ◽  
Jie He ◽  
Pan Zhou ◽  
Lifang Hu ◽  
...  

The novel Cu2O/[Formula: see text]-HTi2NbO7 heterojunction nanocomposite was assembled through a facile exfoliation-restacking route. The as-prepared nanocomposite and its precursors, Cu2O and [Formula: see text]-HTi2NbO7, were characterized by means of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), N2 adsorption–desorption measurements, laser Raman spectroscopy (LRS) and UV–Vis diffuse reflection spectroscopy (UV–Vis DRS). The photocatalytic performance was evaluated by photocatalytic oxidation of ethyl mercaptan (EM) and photocatalytic degradation of methylene blue (MB) dyes under sunlight irradiation. The results showed that Cu2O nanoparticles were successfully distributed on the surface of [Formula: see text]-HTi2NbO7 nanosheets, and the intensity of spectral absorption of the as-prepared nanocomposite in the visible-light region was significantly enhanced. The as-prepared nanocomposite displayed the enhanced photocatalytic activity than the Cu2O nanoparticles and HTi2NbO7 nanosheets due to the formation of a heterojunction structure between Cu2O nanoparticles and HTi2NbO7 nanosheet and a possible photocatalytic mechanism was suggested.


NANO ◽  
2017 ◽  
Vol 12 (01) ◽  
pp. 1750003 ◽  
Author(s):  
Wei Lv ◽  
Jie He ◽  
Andong Xu ◽  
Lifang Hu ◽  
Liangguo Da

Nitrogen-doped HTiNbO5 nanosheet (N-HTiNbO5-NS) aggregation was successfully obtained through a series of process, including preparation of nitrogen-doped precursor (N-KTiNbO5), proton-exchange of N-KTiNbO5 and exfoliation of N-HTiNbO5. The structures of the as-prepared samples are characterized by means of powder X-ray diffraction (XRD), Scan electron microscopy (SEM), Transmission electron microscopy (TEM), N2 adsorption-desorption isotherms UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), Laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis-differential scanning calorimetry (TG-DSC). The catalytic activities of the as-prepared samples are evaluated by the photocatalytic degradation of methylene blue (MB) aqueous solution under visible light irradiation. The results reveal that N-HTiNbO5-NS due to the large specific surface area and brilliant visible light response exhibits a relatively excellent photocatalytic activity in the decomposition of MB under visible light irradiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jiang Zhang ◽  
Zheng-Hong Huang ◽  
Yong Xu ◽  
Feiyu Kang

The iodine-doped Bi2WO6(I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0and were coadsorbed on the defect surface of Bi2WO6in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies.


2011 ◽  
Vol 399-401 ◽  
pp. 1241-1245
Author(s):  
Jin Feng Zhang ◽  
Xiao Ling Yu ◽  
Wei Liu ◽  
Shi Fu Chen

Orthorhombic Nb2WO8 was synthesized by solid state reaction in Nb2O5-WO3 system. Heterojunction photocatalyst Nb2WO8/ZnO was prepared by ball milling. The structural and optical properties of the photocatalyst were characterized by X-ray powder diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, and fluorescence emission spectroscopy.The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine B and reduction of Cr6+. The results showed that the photocatalytic activity of the Nb2WO8/ZnO was higher than that of ZnO. When the amount of doped Nb2WO8 was 10 wt.% and the sample was ball milled for 9 h, the Nb2WO8/ZnO showed the optimal photocatalytic activity. Effect of ball milling time on the photocatalytic activity was also investigated. The mechanisms of the increase in the photocatalytic activity were discussed by the valence band principle.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750059 ◽  
Author(s):  
Zhiyuan Yang ◽  
Junjie Wang ◽  
Lu Chen ◽  
Mengjun Liang ◽  
Yulin Xu ◽  
...  

In this work, we developed a simple hydrothermal method toward the fabrication of TiO2/Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] heterostructure, which had superior photocatalytic performance for degrading of RhB under visible light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The optimal composite with 15[Formula: see text]wt.% TiO2/Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] (TBMO3) exhibits a much higher photocatalytic activity than that of Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] and P25 by degradation of RhB under visible light irradiation within 20[Formula: see text]min. The enhanced performance of TBMO3 is predominantly attributed to the synergistic effect both in the higher surface area and the improved separation of photogenerated charge carriers between the two semiconductors. Recycling experiments indicated that TiO2/Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] photocatalysts had excellent cycle performance and stability. The photocatalytic mechanism of nanocomposite photocatalysts was proposed, which is confirmed by the active species trapping experiments and photoluminescence tests.


2020 ◽  
Vol 20 (9) ◽  
pp. 5418-5425
Author(s):  
Dien-Trung Nguyen ◽  
Cam-Anh Ha ◽  
Tri Nguyen

In this work, titanium oxide catalysts were synthesized by the hydrothermal method from titanium isopropoxide (TTIP) as a precursor under acidic (Ti-A1 and Ti-A2), neutral (Ti-W) and alkaline (Ti-B) media. Characteristics of the catalysts were identified by various methods including X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller adsorption, UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, and Raman spectroscopy. The phase composition and PZC value of the obtained catalysts depended on the hydrothermal medium and the amount of TTIP: pure anatase and brookite phase formed at neutral and alkaline medium, respectively; whereas acidic medium favored the formation of anatase/rutile mixed phase and anatase phase decreased with the increasing amount of TTIP. The band gap energy of the synthesized catalysts was approximately 3.08–3.23 eV. Photocatalytic activity of synthesized catalysts was surveyed in the degradation of cinnamic acid (CA) solution at various pH in the region from 3.8 to 9.0 under UV irradiation. Photocatalytic oxidation was favorable in an acidic environment. At acidic pH values (3.8 and 5.0), the CA conversion was in the order of Ti-A2 ≥ Ti-A1 > Ti-P25 > Ti-W ≫ Ti-B, whereas it followed Ti-P25 > Ti-A1 > Ti-A2 ≈ Ti-W > Ti-B at pH 7.0 as well as pH 9.0.


2014 ◽  
Vol 496-500 ◽  
pp. 297-300 ◽  
Author(s):  
Bi Tao Liu ◽  
Liang Liang Tian ◽  
Ling Ling Peng

A series of composites of the high photoactivity of {001} facets exposed BiOCl and grapheme sheets (GS) were synthesized via a one-step hydrothermal reaction. The obtained BiOCl/GS photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. The as-prepared BiOCl/GS photocatalyst showed enhanced photocatalytic activity for the degradation of methyl orange (MO) under UV and visible light (λ > 400 nm). The enhanced photocatalytic activity could be attributed to oxygen vacancies of the {001} facets of BiOCl/GS and the high migration efficiency of photo-induced electrons, which could suppress the charge recombination effectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
R. M. Mohamed ◽  
M. A. Barakat

ZnO- nanoparticles were synthesized by a sol-gel technique from and tetraethyl orthosilicate (TEOS). The synthesized samples were further modified by nanosized Pt from H2PtCl6solution through photoassisted deposition (PAD) and impregnation (Img) routes. The obtained samples were characterized by a series of techniques including X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, N2adsorption, extended X-ray absorption fine structure (EXAFS), and transmission electron microscopy (TEM). The photocatalytic activity of the Pt-ZnO/ was evaluated by photocatalytic degradation of phenol in synthetic wastewater under UV-irradiation. Results obtained revealed that the surface area and the photocatalytic activity of the prepared samples were increased in the order ZnO/ < PAD: Pt-ZnO/ < img: Pt-ZnO/. The surface area decreased from 480 to 460 and 450 m2/g, while the efficiency of the phenol degradation increased from 80 to 85 and 100%, with the ZnO/, Img: Pt-ZnO-, and PAD: Pt-ZnO- samples, respectively.


NANO ◽  
2019 ◽  
Vol 14 (08) ◽  
pp. 1950096 ◽  
Author(s):  
Wen Gao ◽  
Chengjia Zhang ◽  
Sainan Cui ◽  
Qian Liang ◽  
Song Xu ◽  
...  

In this study, LaFeO3/ZnIn2S4 composites were synthesized via in situ synthesis. The composition, structure and optical absorption properties of LaFeO3/ZnIn2S4 were characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy, fluorescence spectroscopy (PL), Fourier Transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The photocatalytic activity of the LaFeO3/ZnIn2S4 photocatalyst was determined based on the degradation of methyl orange (MO). LaFeO3/ZnIn2S4 composites showed much better photocatalytic performance compared with pure LaFeO3 and ZnIn2S4. The enhanced photocatalytic performance was attributed to intimately contacted interfaces and charge transfer channels which can effectively transfer and separate the photogenerated charge carriers.


Sign in / Sign up

Export Citation Format

Share Document