Tunable Optical Properties of Ag–TiO2 Nanorod Composites Based on Interparticle Plasmon Coupling

NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650110 ◽  
Author(s):  
Yong Zhang ◽  
Fa-Min Liu

The metal–semiconductor composites with unique optical properties are highly desirable. Here we report that Ag–TiO2 nanorod composites with two distinctive absorption peaks exhibit tunable plasmon coupling behaviors. The intensity of the long-wave absorption could be enhanced by modifying the geometry of TiO2 particles, while such absorption is due to the plasmon coupling between the Ag particles. The long-wave absorption bands can be tuned by varying the reaction time and changing the amount of silver acetate. Furthermore, the Ag–TiO2 composites were also prepared by photochemical reduction method which confirmed the previous properties. These results may help to design metal–semiconductor systems with desirable optical properties.

Vacuum ◽  
2021 ◽  
Vol 187 ◽  
pp. 110074
Author(s):  
Roger Magnusson ◽  
Biplab Paul ◽  
Per Eklund ◽  
Grzegorz Greczynski ◽  
Jens Birch ◽  
...  

2007 ◽  
Vol 22 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.


2016 ◽  
Vol 120 (27) ◽  
pp. 14681-14689 ◽  
Author(s):  
Shaista Babar ◽  
Anil U. Mane ◽  
Angel Yanguas-Gil ◽  
Elham Mohimi ◽  
Richard T. Haasch ◽  
...  

Author(s):  
Ying-qi Zhang ◽  
Li-ying Zhou ◽  
Sheng-ye Tao ◽  
Yu-zhang Jiao ◽  
Jin-feng Li ◽  
...  

2008 ◽  
Vol 23 (1) ◽  
pp. 281-293 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near-infrared (NIR)-absorbing nanoparticles synthesized by the reduction of tetrachloroauric acid (HAuCl4) using sodium sulfide (Na2S) exhibited absorption bands at ∼530 nm and at the NIR region of 650−1100 nm. A detailed study on the structure and microstructure of as-synthesized nanoparticles was reported previously. The as-synthesized nanoparticles were found to consist of amorphous AuxS (x = ∼2), mostly well mixed within crystalline Au. In this work, the optical properties were tailored by varying the precursor molar ratios of HAuCl4 and Na2S. In addition, a detailed study of composition and particle-size effects on the optical properties was discussed. The change of polarizability by the introduction of S in the form of AuxS (x = ∼2) had a significant effect on NIR absorption. Also, it was found in this work that exposure of these particles to NIR irradiation using a Nd:YAG laser resulted in loss of the NIR absorption band. Thermal effects generated during NIR irradiation had led to microstructural changes that modified the optical properties of particles.


Sign in / Sign up

Export Citation Format

Share Document