A Review on the Development of Non-Enzymatic Glucose Sensor Based on Graphene-Based Nanocomposites

NANO ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 2030004
Author(s):  
Khok Lun Leong ◽  
Mui Yen Ho ◽  
Xiau Yeen Lee ◽  
Maxine Swee-Li Yee

In this 21th century, the demand for glucose sensors in monitoring diabetes reaches a year-on-year peak due to the unhealthy lifestyle of society. Therefore, it is the utmost important task for scientists and researchers to develop a highly efficient and effective glucose sensor. However, conventional enzymatic glucose sensors have showed some drawbacks and the underlying issues faced by enzymatic glucose sensors are outlined in this paper. With the tremendous advancement of science and technology, the field of diabetes monitoring has evolved from enzymatic to nonenzymatic glucose sensor that heavily emphasized on the usage of nanomaterial. This transformation is supported by various justifications such as a better stability of nonenzymatic sensors towards the surrounding, higher sensitivity and ease of fabrication. Numerous materials including graphene, noble metals, (transition) metal oxides and composites have been explored for its potential in the development and performance improvement of nonenzymatic glucose sensors. This paper reviewed nonenzymatic glucose sensors, their mechanism of glucose oxidation and various promising graphene-based nanocomposite systems as well as the challenges and future perspectives of glucose biosensors.

2017 ◽  
Vol 46 (30) ◽  
pp. 9918-9924 ◽  
Author(s):  
Yinlin Tong ◽  
Jiaying Xu ◽  
Hong Jiang ◽  
Feng Gao ◽  
Qingyi Lu

Novel core–shell Cu@polymer nanocomposites were synthesized through a one-step self-activated route and developed as nonenzymatic glucose sensor.


NANO ◽  
2019 ◽  
Vol 14 (04) ◽  
pp. 1950045
Author(s):  
Fang Sun ◽  
Lehong Xing ◽  
Xihui Yang ◽  
Hailiang Huang ◽  
Lina Ning

In this study, CuO films with hollow cubic cages were prepared by a facile two-step procedure consisting of electrodeposition synthesis and subsequent direct calcination. First, Cu2O nanocubes were fabricated on ITO substrate through a simple electrodeposition procedure. Then, Cu2O nanocubes were converted to CuO hollow cubic cages without obvious morphological change through direct calcination. The obtained CuO cubic cages serving as active materials illustrated a favorable performance for nonenzymatic glucose sensing with high sensitivity of [Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text] at a low applied potential of 0.50[Formula: see text]V, fast-response time (less than 3[Formula: see text]s), low detection limit of 1.0[Formula: see text][Formula: see text]M and wide linear range up from 2.0[Formula: see text][Formula: see text]M to 1.0[Formula: see text]mM ([Formula: see text]). Moreover, the good selectivity of the CuO cubic cages-based nonenzymatic glucose sensor against electroactive compounds such as ascorbic acid, uric acid and dopamine were also demonstrated. These good features indicate that the as-prepared CuO cubic cages can be used as promising electrode materials, which have a great potential in the development of sensitive and selective nonenzymatic glucose sensors.


The increasing demand for the development of highly selective and sensitive nonenzymatic electrochemical sensors for the qualitative and quantitative analysis of glucose in pharmaceutical, clinical and industrial sectors has gained enormous attention towards the use of graphene and its derivatives. This chapter describes the efficient development of electrochemically active nonenzymatic glucose sensors using graphene and its composites, achieving high sensitivity, stability, low detection limit, wide linear range and reproducibility.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaoxu Ji ◽  
Aihua Wang ◽  
Qinghuai Zhao

Copper oxide (CuO) films directly grown on Ti substrate have been successfully prepared via a hydrothermal method and used to construct an amperometric nonenzymatic glucose sensor. XRD and SEM were used to characterize the samples. The electrochemical performances of the electrode for detection of glucose were investigated by cyclic voltammetry and chronoamperometry. The CuO films based glucose sensors exhibit enhanced electrocatalytic properties which show very high sensitivity (726.9 μA mM−1 cm−2), low detection limit (2 μM), and fast response (2 s). In addition, reproducibility and long-term stability have been observed. Low cost, convenience, and biocompatibility make the CuO films directly grown on Ti substrate electrodes a promising platform for amperometric nonenzymatic glucose sensor.


Author(s):  
Lorna K. Mayo ◽  
Kenneth C. Moore ◽  
Mark A. Arnold

An implantable artificial endocrine pancreas consisting of a glucose sensor and a closed-loop insulin delivery system could potentially replace the need for glucose self-monitoring and regulation among insulin dependent diabetics. Achieving such a break through largely depends on the development of an appropriate, biocompatible membrane for the sensor. Biocompatibility is crucial since changes in the glucose sensors membrane resulting from attack by orinter action with living tissues can interfere with sensor reliability and accuracy. If such interactions can be understood, however, compensations can be made for their effects. Current polymer technology offers several possible membranes that meet the unique chemical dynamics required of a glucose sensor. Two of the most promising polymer membranes are polytetrafluoroethylene (PTFE) and silicone (Si). Low-voltage scanning electron microscopy, which is an excellent technique for characterizing a variety of polymeric and non-conducting materials, 27 was applied to the examination of experimental sensor membranes.


Author(s):  
Luis Cláudio de Jesus-Silva ◽  
Antônio Luiz Marques ◽  
André Luiz Nunes Zogahib

This article aims to examine the variable compensation program for performance implanted in the Brazilian Judiciary. For this purpose, a survey was conducted with the servers of the Court of Justice of the State of Roraima - Amazon - Brazil. The strategy consisted of field research with quantitative approach, with descriptive and explanatory research and conducting survey using a structured questionnaire, available through the INTERNET. The population surveyed, 37.79% is the sample. The results indicate the effectiveness of the program as a tool of motivation and performance improvement and also the need for some adjustments and improvements, especially on the perception of equity of the program and the distribution of rewards.


Sign in / Sign up

Export Citation Format

Share Document