Excellent Antimicrobial Activity of Fe3O4/SiO2/Ag Nanocomposites

NANO ◽  
2021 ◽  
pp. 2150049
Author(s):  
Ainun Nikmah ◽  
Ahmad Taufiq ◽  
Arif Hidayat ◽  
Sunaryono ◽  
Hendra Susanto

In this study, a new antimicrobial agent was developed through a synthesis of Fe3O4/SiO2/Ag double nanocomposites using the sol–gel method. The prepared samples were characterized using XRD, SEM, FTIR, UV-Vis, VSM, and antibacterial test. The data analysis results for the Fe3O4/SiO2/Ag composites showed that Fe3O4, SiO2, and Ag constructed respective spinel cubic, orthorhombic, and amorphous structures in nanometric size. The saturation magnetization of Fe3O4/SiO2/Ag nanocomposites decreased due to the increase in the Ag content. Interestingly, the Fe3O4/SiO2/Ag nanocomposites presented excellent microbial activity. Ag deposition on the Fe3O4/SiO2 surface enhanced the antimicrobial activity of nanocomposites because Ag oxidized to Ag[Formula: see text] ion to produce a toxic effect in the cells of microorganisms. Furthermore, the Ag[Formula: see text] ion created the –S–Ag bond chain and deactivated the microorganism cells. Furthermore, surface plasmon resonance of Ag had an impact on the formation of photo-induced electrons, which produced superoxide radical anions, [Formula: see text]O2− generating a collapsing force that causes the death of microorganisms.

2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


Author(s):  
amal aboelnaga ◽  
talaat Meaz ◽  
amany M elnahrawy

Abstract The aim of this study is to investigate the effect of different doses of Velosef in magnesium silica/chitosan nanocomposite in terms of structural, morphology, optical properties, and bioactivity. Loading Velosef in fine-sized magnesium silica/chitosan is an efficient engineering approach for drug delivery. The sol-gel process was used to prepare magnesium silica fine-sized before being blended into chitosan matrix, which acts as a potential morphogenetic biomaterial. The Velosef/magnesium silica/chitosan nanocomposites were characterized by XRD, TEM, SEM, FTIR, UV-absorption, and antimicrobial studies. The XRD was characteristic of the crystallinity degree of the MgO-SiO2/chitosan/Velosef nanocomposites with three maximum peaks at 26.37°, 33.34o, 36.9°. FTIR results indicated the structural change occurred with the Velosef sol-gel polymerization process. UV-absorbance reveals that the MgO-SiO2/chitosan nanocomposite appeared a high performance for loading Velosef at two absorption bands at 253 and 347 nm. The MgO-SiO2/Chitosan/Velosef nanocomposites showed considerable antimicrobial activity in opposition to the tested representative microorganisms. The maximum antimicrobial activity was obtained with MgO-SiO2/Chitosan against both Escherichia coli and Candida albicans (37 mm), while the minimum antimicrobial activity (30 mm) was recorded against B. mycoides and E. coli with control.


1998 ◽  
Vol 109 (21) ◽  
pp. 9632-9633 ◽  
Author(s):  
W. B. Knighton ◽  
T. M. Miller ◽  
A. A. Viggiano ◽  
R. A. Morris ◽  
J. M. Van Doren

2002 ◽  
Author(s):  
W. Ranjith Premasiri ◽  
Richard H. Clarke ◽  
M. Edward Womble

Author(s):  
F. J. García-Rodríguez ◽  
J. González-Hernández ◽  
F. Pérez-Robles ◽  
Y. V. Vorobiev ◽  
A. Manzano-Ramírez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document