Effect of Annealing temperature on the Structural and Magnetic Properties of TbxY3-xFe5O12(x = 0.0, 1.0, 2.0) Thin Films Prepared by Sol-Gel Process

2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.

1997 ◽  
Vol 12 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Ji Zhou ◽  
Qing-Xin Su ◽  
K. M. Moulding ◽  
D. J. Barber

Ba(Mg1/3Ta2/3)O3 thin films were prepared by a sol-gel process involving the reaction of barium isopropoxide, tantalum ethoxide, and magnesium acetate in 2-methoxyethanol and subsequently hydrolysis, spin-coating, and heat treatment. Transmission electron microscopy, x-ray diffraction, and Raman spectroscopy were used for the characterization of the thin films. It was shown that the thin films tend to crystallize with small grains sized below 100 nm. Crystalline phase with cubic (disordered) perovskite structure was formed in the samples annealed at a very low temperature (below 500 °C), and well-crystallized thin films were obtained at 700 °C. Although disordered perovskite is dominant in the thin films annealed below 1000 °C, a low volume fraction of 1 : 2 ordering domains was found in the samples and grows with an increase of annealing temperature.


2009 ◽  
Vol 1199 ◽  
Author(s):  
Danilo G Barrionuevo ◽  
Surinder P Singh ◽  
Maharaj S. Tomar

AbstractWe synthesized BiFe1-xMnxO3 (BFMO) for various compositions by sol gel process and thin films were deposited by spin coating on platinum Pt/Ti/SiO2/Si substrates. X-ray diffraction shows all the diffraction planes corresponding to rhombohedrally distorted perovskite BiFeO3 structure. The absence of any impurity phase in the films suggests the incorporation Mn ion preferentially to Fe site in the structure for low concentration. Magnetic measurements reveal the formation of ferromagnetic phase at room temperature with increased Mn substitution. On the other hand, ferroelectric polarization decreases with increasing Mn ion concentration. Raman studies suggest the dopant induced structural distortion.


2004 ◽  
Vol 03 (04n05) ◽  
pp. 463-470
Author(s):  
Y. C. WANG ◽  
J. DING ◽  
B. H. LIU ◽  
Y. SHI

Thin films and powders of Co -ferrite and SiO 2-doped Co -ferrite were fabricated via the sol–gel method. The structural and magnetic properties of the films and powders were investigated with X-Ray Diffractometer (XRD), Vibrating Sample Magnetometer (VSM), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). VSM measurements showed an enhancement of coercivity by SiO 2-doping for Co -ferrite powders and thin films (coercivity of 3.5 kOe in SiO 2-doped thin films). XRD and SEM investigations revealed a nanostructure of the thin films. Low surface roughness was observed in our AFM study.


2013 ◽  
Vol 734-737 ◽  
pp. 2328-2331
Author(s):  
Yu Fei You ◽  
C.H. Xu ◽  
Jing Zhe Wang ◽  
Jun Peng Wang

Sol-gel method is used for the formation of Pb0.499Sr0.499TiO3 (PST)thin films. The initial films were prepared with spin coating sol solution on silicon wafer and drying at room temperature and then heating coated dry sol film at 400°C for 10min. This process was repeated for 1-4 times to obtain 4 initial films with different thicknesses. The 4 initial films were annealed at 700°C for 2h to obtain PST ceramics films. The morphologies of the surface and cross-section of PST films were observed with a scanning electronic microscope (SEM). The phase structures of PST films were analyzed using X-ray diffraction meter (XRD). Experimental results show that PST film prepared by coating sol on silicon with different thicknesses can be high smooth,uniform and compact film.


2013 ◽  
Vol 744 ◽  
pp. 315-318
Author(s):  
Wei Rao ◽  
Ding Guo Li ◽  
Hong Chun Yan

Cobalt ferrite (CoFe2O4) thin films have been prepared on Si (001) substrates, with different calcined temperatures (Tcal=400°C~800°C). The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low calcined temperatures, the films presented a mixture of a CoFe2O4phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the calcined temperature increased, the CoO and FeO relative content strongly decreased, so that for Tcal=800°Cthe films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field originated by the presence of the antiferromagnetic phases.


2011 ◽  
Vol 1352 ◽  
Author(s):  
Radomír Kužel ◽  
Lea Nichtová ◽  
Zdeněk Matěj ◽  
Zdeněk Hubička ◽  
Josef Buršík

ABSTRACTIn-situ laboratory measurements in X-ray diffraction (XRD) high-temperature chamber and detailed XRD measurements at room temperature were used for the study of the thickness, temperature and time dependences of crystallization of amorphous TiO2 thin films. The films deposited by magnetron sputtering, plasma jet sputtering and sol-gel method were analyzed. Tensile stresses were detected in the first two cases. They are generated during the crystallization and inhibit further crystallization that also depends on the film thickness. XRD indicated quite rapid growth of larger crystallites unlike the sol-gel films when the crystallites grow mainly by increasing of annealing temperature.


2014 ◽  
Vol 21 (01) ◽  
pp. 1450013 ◽  
Author(s):  
ZOHRA NAZIR KAYANI ◽  
SAIRA RIAZ ◽  
SHAHZAD NASEEM

The nano-crystalline iron nitride films with a mixture of γ- Fe 4 N , ε Fe 3 N and α Fe 2 N phases were synthesized on copper substrate by sol–gel technology. The structure, morphology and magnetic properties of the samples were characterized using X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer. The films are ferromagnetic at room temperature. Magnetic properties such as coercive forces and saturation magnetization were found to be 398 Oestered and 32.92 emu/cm3, respectively.


2014 ◽  
Vol 716-717 ◽  
pp. 159-162 ◽  
Author(s):  
Shao Hua Yang ◽  
Ding Guo Li ◽  
Hai Bin Yang ◽  
Hong Chun Yan

Cobalt ferrite (CoFe2O4) thin films have been prepared on Si (001) substrates, with different calcined temperatures (Tcal=400°C~800°C). The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low calcined temperatures, the films presented a mixture of a CoFe2O4phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the calcined temperature increased, the CoO and FeO relative content strongly decreased, so that for Tcal=800°Cthe films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field originated by the presence of the antiferromagnetic phases.


2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


Sign in / Sign up

Export Citation Format

Share Document