scholarly journals Towards Programming in Natural Language: Learning New Functions from Spoken Utterances

2020 ◽  
Vol 14 (02) ◽  
pp. 249-272
Author(s):  
Sebastian Weigelt ◽  
Vanessa Steurer ◽  
Tobias Hey ◽  
Walter F. Tichy

Systems with conversational interfaces are rather popular nowadays. However, their full potential is not yet exploited. For the time being, users are restricted to calling predefined functions. Soon, users will expect to customize systems to their needs and create own functions using nothing but spoken instructions. Thus, future systems must understand how laypersons teach new functionality to intelligent systems. The understanding of natural language teaching sequences is a first step toward comprehensive end-user programming in natural language. We propose to analyze the semantics of spoken teaching sequences with a hierarchical classification approach. First, we classify whether an utterance constitutes an effort to teach a new function or not. Afterward, a second classifier locates the distinct semantic parts of teaching efforts: declaration of a new function, specification of intermediate steps, and superfluous information. For both tasks we implement a broad range of machine learning techniques: classical approaches, such as Naïve Bayes, and neural network configurations of various types and architectures, such as bidirectional LSTMs. Additionally, we introduce two heuristic-based adaptations that are tailored to the task of understanding teaching sequences. As data basis we use 3168 descriptions gathered in a user study. For the first task convolutional neural networks obtain the best results (accuracy: 96.6%); bidirectional LSTMs excel in the second (accuracy: 98.8%). The adaptations improve the first-level classification considerably (plus 2.2% points).

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


Author(s):  
Rashida Ali ◽  
Ibrahim Rampurawala ◽  
Mayuri Wandhe ◽  
Ruchika Shrikhande ◽  
Arpita Bhatkar

Internet provides a medium to connect with individuals of similar or different interests creating a hub. Since a huge hub participates on these platforms, the user can receive a high volume of messages from different individuals creating a chaos and unwanted messages. These messages sometimes contain a true information and sometimes false, which leads to a state of confusion in the minds of the users and leads to first step towards spam messaging. Spam messages means an irrelevant and unsolicited message sent by a known/unknown user which may lead to a sense of insecurity among users. In this paper, the different machine learning algorithms were trained and tested with natural language processing (NLP) to classify whether the messages are spam or ham.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


Sign in / Sign up

Export Citation Format

Share Document