scholarly journals Photodynamic therapy of cancer — Challenges of multidrug resistance

2015 ◽  
Vol 08 (01) ◽  
pp. 1530002 ◽  
Author(s):  
Zheng Huang ◽  
Yih-Chih Hsu ◽  
Li-Bo Li ◽  
Luo-Wei Wang ◽  
Xiao-Dong Song ◽  
...  

Photodynamic therapy (PDT) of cancer is a two-step drug-device combination modality, which involves the topical or systemic administration of a photosensitizer followed by light illumination of cancer site. In the presence of oxygen molecules, the light illumination of photosensitizer (PS) can lead to the generation of cytotoxic reactive oxygen species (ROS) and consequently destroy cancer. Similar to many other anticancer therapies, PDT is also subject to intrinsic cancer resistance mediated by multidrug resistance (MDR) mechanisms. This paper will review the recent progress in understanding the interaction between MDR transporters and PS uptake. The strategies that can be used in a clinical setting to overcome or bypass MDR will also be discussed.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1345
Author(s):  
Sherif Ashraf Fahmy ◽  
Hassan Mohamed El-Said Azzazy ◽  
Jens Schaefer

Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.


2019 ◽  
Vol 20 (5) ◽  
pp. 1148 ◽  
Author(s):  
Chun-Chen Yang ◽  
Wei-Yun Wang ◽  
Feng-Huei Lin ◽  
Chun-Han Hou

Conventional photodynamic therapy (PDT) is limited by its penetration depth due to the photosensitizer and light source. In this study, we developed X-ray induced photodynamic therapy that applied X-ray as the light source to activate Ce-doped CaCO3 (CaCO3:Ce) to generate an intracellular reactive oxygen species (ROS) for killing cancer cells. The A549 cell line was used as the in vitro and in vivo model to evaluate the efficacy of X-ray-induced CaCO3:Ce. The cell viability significantly decreased and cell cytotoxicity obviously increased with CaCO3:Ce exposure under X-ray irradiation, which is less harmful than radiotherapy in tumor treatment. CaCO3:Ce produced significant ROS under X-ray irradiation and promoted A549 cancer cell death. CaCO3:Ce can enhance the efficacy of X-ray induced PDT, and tumor growth was inhibited in vivo. The blood analysis and hematoxylin and eosin stain (H&E) stain fully supported the safety of the treatment. The mechanisms underlying ROS and CO2 generation by CaCO3:Ce activated by X-ray irradiation to induce cell toxicity, thereby inhibiting tumor growth, is discussed. These findings and advances are of great importance in providing a novel therapeutic approach as an alternative tumor treatment.


2020 ◽  
Vol 96 (2) ◽  
pp. 340-348 ◽  
Author(s):  
Yi Hong Ong ◽  
Andreaa Dimofte ◽  
Michele M. Kim ◽  
Jarod C. Finlay ◽  
Tianqi Sheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document