GROWTH OF ANTIMONY DOPED ZnO FIBER AND ITS APPLICATION IN DYE SENSITIZED SOLAR CELLS

2010 ◽  
Vol 03 (04) ◽  
pp. 279-283 ◽  
Author(s):  
LEI GUO ◽  
LEI L. KERR

Antimony doped ZnO (ZnO:Sb) fiber was grown by a simple thermal evaporation process of Zn powder and Sb2O3 . Scanning Electron Microscopy (SEM) shows that the grown fiber reaches more than 70 μm, which is the longest ZnO fiber reported in literature. Electron Backscattered Diffraction (EBSD) study indicates that this crystal is composed of three main phases: antimony doped zinc oxide (ZnO:Sb) , ordonezite (ZnSb2O6) and zinc antimony oxide (Zn7Sb2O12) . The current–voltage (I–V) characteristics demonstrate that the conversion efficiency of dye sensitized solar cell was greatly enhanced by ZnO:Sb fiber.

2013 ◽  
Vol 311 ◽  
pp. 446-450 ◽  
Author(s):  
Shi Mian Chao ◽  
Teen Hang Meen ◽  
Yi Ting Jhuo ◽  
Jenn Kai Tsai ◽  
Jun Xiang Wang ◽  
...  

In this study, the flexible dye-sensitized solar cell is fabricated by pressurization-transfer technique, which involves assembling TiO2 films on ITO/PEN flexible substrates via high temperature sintering. During the experiment, we change not only the film thickness and structure of TiO2 but also the dye of working electrodes. The surface morphology of TiO2 films are examined by field emission scanning electron microscopy (FE-SEM). The analyses of UV-Vis show that N3 dye could be adsorbed on the TiO2 thin films, and the TiO2 thin film with scattering layer has better absorption than that of without scattering layer. The current-voltage of the DSSC is illuminated by the solar simulator whose incident light intensity was 1000 W/m2. These results indicate that the best efficiency of flexible dye-sensitized solar cell with high-temperature sintering TiO2 film and scattering layer is 6.13%.


2018 ◽  
Vol 6 (42) ◽  
pp. 11444-11456 ◽  
Author(s):  
Jonnadula Venkata Suman Krishna ◽  
Narra Vamsi Krishna ◽  
Towhid H. Chowdhury ◽  
Suryaprakash Singh ◽  
Idriss Bedja ◽  
...  

We have designed and synthesised four novel porphyrin sensitizers for dye-sensitized solar cell applications and shown power conversion efficiency of 10.5%.


2018 ◽  
Vol 47 (34) ◽  
pp. 11942-11952 ◽  
Author(s):  
Kitty Y. Chen ◽  
Phil A. Schauer ◽  
Brian O. Patrick ◽  
Curtis P. Berlinguette

Two sets of structurally analogous Co(iii/ii)-based redox mediators were incorporated in the dye-sensitized solar cells and a linear correlation was demonstrated between redox potential and photovoltage.


This paper investigates the effect of applying a static and dynamic magnetic field in the process of depositing the Fe-Cu compound on the working electrode of a dye-sensitized solar cell (DSSC). Depositing this compound on glass is especially hard due to the unfavorable layer inconsistencies that accompany the utilization of the doctor blade technique and the dissociation of the compound at a temperature of 700˚C, which prevents its ability to be evaporated or sintered beyond that temperature. The Fe-Cu compound is appreciably cheaper, relatively simple to produce and is more absorptive (>81%) in the Vis-NIR than the standard TiO2 mesoporous material normally used for DSSCs. The high diffusion of the Fe into the Cu lattice allows the compound to behave as a semiconductor and is found to have a bandgap of 1.8V. The sensitizer used in the production of a test cell consisted of a Schiff base dye with a compatible bandgap of 1.68 eV and resulted in more generated photocurrent than its TiO2 counterpart, which is a promising result for an alternative mesoporous layer in solar cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (20) ◽  
pp. 16150-16158 ◽  
Author(s):  
Yousuke Ooyama ◽  
Koji Uenaka ◽  
Takuya Kamimura ◽  
Shuwa Ozako ◽  
Masahiro Kanda ◽  
...  

Cyclic free-base porphyrin dimers linked by butadiyne or phenothiazine bearing four 4-pyridyl groups and their inclusion complexes with fullerene C60 have been applied to dye-sensitized solar cells as a new class of porphyrin dye sensitizers.


2019 ◽  
Vol 22 (4) ◽  
pp. 250-253
Author(s):  
А.А. Abdukarimov ◽  
R.G. Ikramov ◽  
O.O. Mamatkarimov ◽  
A.K. Arof

In this work, several liquid electrolytes (LE) have been prepared. The electrolytes contain tetrapropylammonium iodide (TPAI) salt with different salt content, propylene carbonate (PC), ethylene carbonate (EC), polyethylene oxide (PEO), dimethylformamide (DMF) and (I-/I3-) redox couple LE was used in the Dye-Sensitized Solar Cell (DSSC). DSSCs were fabricated and current density-voltage (J-V) characteristics measured. The highest incident photon conversion efficiency (IPCE) at 520 nm is 45.5% for DSSC with 0.25 g TPAI LE. At AM 1.5, DSSC with LE exhibits efficiency of 6.61% with Jsc= 18.69 mA cm-2, Voc= 0.68V and fill factor (FF) = 0.52.


Sign in / Sign up

Export Citation Format

Share Document