scholarly journals Performance Enhancement of Bulk Heterojunction Hybrid Solar Cell Using Macroporous Silicon

2015 ◽  
Vol 43 ◽  
pp. 11-20 ◽  
Author(s):  
A.T.M. Saiful Islam ◽  
Mushtaq Ahmed Sobhan ◽  
Abu Bakar Md. Ismail

This article focuses on the work which deals with the effect of introducing macroporous silicon as the cathode of hybrid solar cell. This work shows that the photocurrent of bulk-heterojunction hybrid solar cell can be enhanced by using macroporous silicon (macro-PSi) as the cathode that provided increased effective contact surface area at the interface of organic-inorganic material. The organic compound (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) polymer blend at 1:1 ratio was used to fabricate the solar cell. It was found that the pore-diameter of the porous silicon plays an important role on short-circuit current of the fabricated hybrid solar cell. Huge enhancement of short-circuit current density (~ 73 times) was obtained when the average pore diameter of macro-PSi was comparable to the photogenerated carrier transport length of the photoactive polymer. The annealing of the whole structure further enhanced the overall performance of the fabricated hybrid solar cell.

2012 ◽  
Vol 05 (02) ◽  
pp. 1260004 ◽  
Author(s):  
GENTIAN YUE ◽  
JIHUAI WU ◽  
YUNFANG HUANG ◽  
YAOMING XIAOMING XIAO ◽  
ZHANG LAN

An iodine/iodide-free and polymer heterojunction-sensitized hybrid solar cell is fabricated by using 6,6-phenyl- C61 -butyric acid methyl ester (PCBM) as electronic acceptor, poly(3-hexylthiophene) (P3HT) as donor and TiO2 film as substrate. The PCBM–P3HT heterojunction can harvest ultraviolet-visible light, transport charge carriers, replacing the dyes and electrolytes in dye-sensitized solar cell. The cell with a PCBM/P3HT ratio of 1:2 shows a short circuit current of 5.47 mA⋅cm-2, an open circuit voltage of 0.849 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 2.97% under a simulated solar light irradiation of 100 mW⋅cm-2.


2014 ◽  
Vol 925 ◽  
pp. 580-584 ◽  
Author(s):  
Mohamad Syafiq Alias ◽  
Sharul Ashikin Kamaruddin ◽  
Che Ani Norhidayah ◽  
Nurulnadia Sarip ◽  
Nayan Nafarizal ◽  
...  

In this paper, we explore the characteristics of bulk heterojunction solar cell based on poly (3-hexyl thiophene) [P3HT] and [6,6]-phenyl-C61-butyric acid methyl ester [PCBM] by introducing a buffer layer with device configuration of ITO/ZnO/P3HT:PCBM/Au. Nanostructured ZnO with individual diameter around 20-50 nm was used as the buffer layer and its effects on the short circuit current density, Jsc and open circuit voltage, Voc were investigated. It was found that, the electrical characteristic of the organic solar cell was obviously changed by introducing the buffer layer. Solar cell characteristic with Voc of 0.3939 V was obtained but the Jsc was very small. The surface topology of the P3HT:PCBM was investigated using an atomic force microscopy (AFM). ZnO nanoparticles were observed using a field emission scanning electron microscope (FESEM) and the electrical properties of the solar cell was measured using a solar simulator with a current – voltage (I-V) measurement system.


2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


2012 ◽  
Vol 531-532 ◽  
pp. 40-44
Author(s):  
Zhi Feng Liu ◽  
Yi Ting Liu

Hybrid solar cell based on copper-phthalocyanine (CuPc) and textured Si has been fabricated. Influence of silicon texturization on the photovoltaic properties of CuPc/n-Si hybrid solar cell was studied by current-voltage characteristic curves in the dark and under illumination conditions. As a result, it is found that textured Si can improve significantly the performance of hybrid solar cell. It exhibits a three times increase in the short-circuit current density with respect to that of the standard hybrid solar cell, and the short-circuit current density reaches up to 5.4 mA/cm2. In addition, the open-voltage and fill factor are almost constant. The solar-energy conversion efficiency is increased by about three times by the textured Si and achieved about 0.8% under “one Sun” illumination. Furthermore, the possible reasons for this result have been discussed.


2014 ◽  
Vol 783-786 ◽  
pp. 2002-2004 ◽  
Author(s):  
Tomohiro Nozaki ◽  
Yi Ding ◽  
Ryan Gresback

Silicon nanocrystals (SiNCs) have unique optical and electronic properties that are advantageous for semiconductor device applications and here their application to solar cell is presented. Free-standing, narrow size distribution SiNCs were synthesized by non-thermal plasma using silicon tetrachloride (SiCl4) successfully. Blended solution of as-produced SiNCs and P3HT, or Poly(3-hexylthiophene-2,5-diyl), was spin-casted to form bulk heterojunction solar cell devices. As the weight fraction of SiNCs increased up to 50 wt%, the short circuit current and the power conversion efficiency dramatically increased, while the open circuit voltage and the fill factor do not change significantly. The improved performance is attributable to increased probability of exciton dissociation at acceptor SiNCs and donor P3HT interface.


2013 ◽  
Vol 774-776 ◽  
pp. 753-756
Author(s):  
Xin Mei Liu ◽  
Feng Ming Fu ◽  
Wei Min Guo

A bulk-heterjunction hybrid solar cell based on CdS nanorods as electron acceptor and conjugated polymers P3HT (Poly (3-Hexylthiophene)) as donor was fabricated through solution processing. Plasmon-active silver nanoparticle layers were introduced in the hybrid solar cell. Silver nanoparticle layers were fabricated using thermal evaporation deposition of 10 nm of silver thin layers on indium tin oxide (ITO) substrate followed by annealing. Under the surface plasmon excitation in Ag nanoparticles deposited on a semiconductor surface, increasing optical electrical field inside the photoactive layer led to an increased short circuit current density (Jsc) and improved fill factor (FF) of the cell. Consequently, under AM1.5G illumination (100 mW.cm-2), the plasmon-decorated cell based on CdS-nanorods/P3HT showed a four-times increase of the power conversion efficiency (PCE) compared with the undecorated one.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3797 ◽  
Author(s):  
Syed Abdul Moiz ◽  
A. N. M. Alahmadi ◽  
Abdulah Jeza Aljohani

Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed.


2020 ◽  
Vol 860 ◽  
pp. 34-41
Author(s):  
Nur Fadhilah Syarif ◽  
Rahmat Hidayat ◽  
Priastuti Wulandari

We attempt to study the effect of gold nanoparticles embedded into the active polymer of regioreguler poly (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) on the charge kinetic to enhance the performance of bulk-heterojunction solar cell. It has been known that the generation of localized surface plasmon resonance (LSPR) would both increase the photon absorption and improve the efficiency of charge separation. Synthesis of gold nanoparticles stabilized by oleylamine (AuOA) was carried out by reduction method and resulted in the spherical shape of nanoparticles with a diameter size of ~12 nm. The absorbance spectra show the typical of surface plasmon peak of AuOA in solution at ~527 nm. Fabrication of inverted bulk-heterojunction solar cell device was done in the configuration of ITO/ZnO/P3HT:PCBM:AuOA/PEDOT:PSS/Ag. Incorporation of AuOA in polymer solution is clearly detected from the enhanced absorbance peak resulted from UV-Vis measurement and the mix solution of P3HT:PCBM:AuOA is quite stable in the concentration of AuOA less than 10 wt%. In our experiment, fabricated solar cell reveals the enhancement in current density at short circuit condition (Jsc) from 44.57 mA/cm2 to 56.14 mA/cm2 with the addition of 3.9 wt% AuOA in polymer solution along with the enhancement of power conversion efficiency (PCE) from 4.07% to 6.23% as characterized by J-V measurement. In our case, the voltage at open circuit condition (Voc) of the device does not show significant improvement.


2008 ◽  
Vol 1091 ◽  
Author(s):  
Osamu Yoshikawa ◽  
Taro Sonobe ◽  
Takashi Sagawa ◽  
Susumu Yoshikawa

AbstractThe performance of the devices of bulk heterojunction polymer-based solar cells were investigated by using poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as light absorption (viz. active) layer, with TiOx as interlayer as follows: ITO/PEDOT:PSS/P3HT-PCBM/TiOx/Al [1] through the treatment of microwave irradiation (single mode of 2.45 GHz, 800 W for 1, 2.5, or 5 min). Such treatments enabled to increase the short-circuit current density Jsc (from 4.53 mA cm−2 to 7.27 mA cm−2) and fill factor FF (from 0.41 to 0.66) of the cell, though the open circuit voltage Voc was decreased (from 0.61 V to 0.57 V) along the irradiation. Absorption spectra of P3HT-PCBM blended film before and after the microwave treatment were observed. Shoulders at 550 nm and 600 nm appeared after the irradiation. This result implies that the microcrystallization of P3HT was slightly promoted through the microwave treatment.


2011 ◽  
Vol 1359 ◽  
Author(s):  
A.J. Trindade ◽  
M.G. Santos ◽  
J. Gomes ◽  
L. Pereira

ABSTRACTThis work shows the relationship between the morphology (studied by AFM) of an active bulk-heterojunction (BHJ) layer composed by MEH-PPV (poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) and the respective photovoltaic figures of merit. It is observed that the most relevant parameter (influencing the efficiency) is the fill-factor (FF), as both the open circuit voltage and short circuit current are not significantly affected by the microscopic morphology. Different local conformation of the active films can change the FF from near 25% to more than 65%, having a strong impact in the efficiency. These results were modulated by an equivalent circuit. Serial and parallel resistances were related with the physical behavior of the organic cells. These were observed to have a direct relationship with the achieved morphology.


Sign in / Sign up

Export Citation Format

Share Document