scholarly journals Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3797 ◽  
Author(s):  
Syed Abdul Moiz ◽  
A. N. M. Alahmadi ◽  
Abdulah Jeza Aljohani

Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed.

2012 ◽  
Vol 05 (02) ◽  
pp. 1260004 ◽  
Author(s):  
GENTIAN YUE ◽  
JIHUAI WU ◽  
YUNFANG HUANG ◽  
YAOMING XIAOMING XIAO ◽  
ZHANG LAN

An iodine/iodide-free and polymer heterojunction-sensitized hybrid solar cell is fabricated by using 6,6-phenyl- C61 -butyric acid methyl ester (PCBM) as electronic acceptor, poly(3-hexylthiophene) (P3HT) as donor and TiO2 film as substrate. The PCBM–P3HT heterojunction can harvest ultraviolet-visible light, transport charge carriers, replacing the dyes and electrolytes in dye-sensitized solar cell. The cell with a PCBM/P3HT ratio of 1:2 shows a short circuit current of 5.47 mA⋅cm-2, an open circuit voltage of 0.849 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 2.97% under a simulated solar light irradiation of 100 mW⋅cm-2.


2019 ◽  
Vol 34 (04) ◽  
pp. 2050053
Author(s):  
Fatemeh Ghavami ◽  
Alireza Salehi

In this paper, the performance of copper-indium-gallium-diselenide Cu(In,Ga)Se2 solar cell, with ZnO window layer, ZnSe buffer layer, CIGS absorber layer and InGaP reflector layer was studied. The study was performed using the TCAD Silvaco simulator. The effects of grading the band gap of CIGS absorber layer, the various thicknesses and doping concentrations of different layers have been investigated. By optimizing the solar cell structure, we have obtained a maximum open circuit voltage of 0.91901 V, a short circuit current density of 39.89910 mA/cm2, a fill factor (FF) of 86.67040% and an efficiency of 31.78% which is much higher than the values for similar CIGS solar cells reported so far.


2008 ◽  
Vol 1101 ◽  
Author(s):  
Chang-Wei Liu ◽  
Zingway Pei ◽  
Shu-Tong Chang ◽  
Ren-Yui Ho ◽  
Min-Wei Ho ◽  
...  

AbstractOne of the parameters that limit the efficiency of a thin film solar cell, especially the a-Si and the nc-Si solar cell is the cell thickness. Although thicker film can absorb most of the sun light, the optical generated carriers will recombination through the numerous gap states in the film that obtained lower short circuit current and fill factor. In the controversy, thinner film could not absorb enough sun light that also limit the short circuit current. In this works, we utilize nanowire structure to solve the conflict between the light absorption and the carrier transport. The designed structure has ZnO:Al nanowire array on the substrate. The p-i-n a-Si solar cell structure is grown along the surface of each ZnO: Al nanowire sequentially. Under sunlight illumination, the light is absorbed in the axis direction of the nanowire. However, the carrier transport is along the radial direction of the solar cell. Therefore, the long nanowire could absorb most of the solar light. In the mean time, the thickness of the solar cell still is thin enough for photo-generated carrier transport. The dependence of short circuit current, open circuit voltage and fill factor to the length, diameter and density of ZnO:Al nanowires were simulated.


2011 ◽  
Vol 1305 ◽  
Author(s):  
Xiaobing Xie ◽  
Xiangbo Zeng ◽  
Wenjie Yao ◽  
Ping Yang ◽  
Shiyong Liu ◽  
...  

ABSTRACTWe made an amorphous-silicon (a-Si) solar cell with a nanowire-array structure on stainless steel(SS) by plasma enhanced chemical vapor (PECVD) deposition. This nanowire structure has an n-type Si nanowire array in which a-Si intrinsic layer and p type layer are sequentially grown on the surface of the nanowire. The highest open-circuit voltage (Voc) and short-circuit current density (Jsc) for AM 1.5 illumination were 620 mV and 13.4 mA/cm2, respectively at a maximum power conversion efficiency of 3.57%.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Aniruddha Singh Kushwaha ◽  
Pramila Mahala ◽  
Chenna Dhanavantri

We have conducted numerical simulation of p-GaN/In0.12Ga0.88N/n-GaN, p-i-n double heterojunction solar cell. The doping density, individual layer thickness, and contact pattern of the device are investigated under solar irradiance of AM1.5 for optimized performance of solar cell. The optimized solar cell characteristic parameters for cell area of 1  × 1 mm2are open circuit voltage of 2.26 V, short circuit current density of 3.31 mA/cm2, fill factor of 84.6%, and efficiency of 6.43% with interdigitated grid pattern.


2017 ◽  
Vol 16 (1) ◽  
pp. 47-52
Author(s):  
Sayeda Anika Amin ◽  
Md. Tanvir Hasan

Quantum Dot Intermediate Band Solar Cell (QDIBSC) is one of the emerging technologies in the solar photovoltaic arena, which has immense potential to be demonstrated as a high efficiency device. For a QDIBSC to surpass the efficiency of a single junction cell, optimization of design is required. In this work, a QDIBSC model based on In0.53Ga0.47As quantum dots has been designed and evaluated with respect to dot size and spacing. The impact of carrier lifetime on short-circuit current and open-circuit voltage is studied. The conversion efficiency has been enhanced from 27.1% to 32.62% as compared to a conventional single junction cell.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
H. C. Hassan ◽  
Z. H. Z. Abidin ◽  
F. I. Chowdhury ◽  
A. K. Arof

The objective of this work is to investigate the performance of chlorophyll sensitized solar cells (CSSCs) with gel electrolyte based on polyvinyl alcohol (PVA) with single iodide salt (potassium iodide (KI)) and double salt (KI and tetrapropylammonium iodide (TPAI)). Chlorophyll was extracted from the bryophyteHyophila involuta. The CSSC with electrolyte containing only KI salt produced a short circuit current density (Jsc) of 4.59 mA cm−2, open circuit voltage (Voc) of 0.61 V, fill factor (FF) of 0.64, and efficiency (η) of 1.77%. However, the CSSC with double salt electrolyte exhibitedJscof 5.96 mA cm−2,Vocof 0.58 V, fill factor FF of 0.58, andηof 2.00%. Since CSSC with double salt electrolyte showed better efficiency, other cells fabricated will use the double salt electrolyte. On addition of 0.7 M tetrabutyl pyridine (TBP) to the double salt electrolyte, the cell’s efficiency increased to 2.17%,Jsc=5.37 mA cm−2,Voc=0.55 V, and FF = 0.73. With 5 mM chenodeoxycholic acid (CDCA) added to the chlorophyll, the light to electricity efficiency increased to 2.62% withJscof 8.44 mA cm−2,Vocof 0.54 V, and FF of 0.58.


Author(s):  
M.M. Solovan ◽  
V.V. Brus ◽  
A.I. Mostovyi ◽  
P.D. Maryanchuk ◽  
I.G. Orletskyi ◽  
...  

Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nanostructured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage Voc=0.8 V, short-circuit current Isc=3.72 mA/cm2 and fill factor FF=0.5 under illumination of 100 mW/сm2. DOI: 10.21883/FTP.2017.04.44354.8407


2018 ◽  
Vol 31 (1) ◽  
pp. 89-100
Author(s):  
Sobhan Abasian ◽  
Reza Sabbaghi-Nadooshan

The present study was undertaken to examine the structure and performance of hetero junctions on the fill factor, short circuit current and open circuit voltage of aInGaP/GaAsdual-junction solar cell. This goal of this work was to reduce recombination in the bottom cell so that the electrons and holes produced in the top cell with the lowest recombination participate in the output current. Semiconductors with a high bandwidth from the ?? group were studied in order to obtain a high open circuit voltage. By observing mobility and lattice constant semiconductors (Al0.52In0.48P, GaAs and In0.49Ga0.51P), it was concluded that the semiconductor Al0.52In0.48P has high electron mobility and hole mobility and that the lattice constant matched to the GaAs semiconductor can be effective in reducing recombination. The cathode current and absorbed photons show that the composition InGaP/AlInP increased the number of charge carriers in the top cell. The structure of InGaP-AlInP/GaAs-AlInP was obtained by inserting an InGaP-AlInP heterojunction at the top and GaAs-AlInP heterojunction at the bottom of aInGaP/GaAs dual-junction cell. For this structure, short circuit current (JSC) = 22.96 mA/cm2, open circuit voltage (Voc) = 2.72 V, fill factor (FF) = 93.26% and efficiency(?)= 58.28% were obtained under AM1.5 (1 sun) of radiation.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Sign in / Sign up

Export Citation Format

Share Document