Positive solutions and stability of fuzzy Atangana–Baleanu variable fractional differential equation model for a novel coronavirus (COVID-19)

Author(s):  
Pratibha Verma ◽  
Manoj Kumar

This work provides a new fuzzy variable fractional COVID-19 model and uses a variable fractional operator, namely, the fuzzy variable Atangana–Baleanu fractional derivatives in the Caputo sense. Next, we explore the proposed fuzzy variable fractional COVID-19 model using the fixed point theory approach and determine the solution’s existence and uniqueness conditions. We choose an appropriate mapping and with the help of the upper/lower solutions method. We prove the existence of a positive solution for the proposed fuzzy variable fractional COVID-19 model and also obtain the result on the existence of a unique positive solution. Moreover, we discuss the generalized Hyers–Ulam stability and generalized Hyers–Ulam–Rassias stability. Further, we investigate the results on maximum and minimum solutions for the fuzzy variable fractional COVID-19 model.

Author(s):  
Amjad Ali ◽  
Nabeela Khan ◽  
Seema Israr

AbstractIn this article, we study a class of nonlinear fractional differential equation for the existence and uniqueness of a positive solution and the Hyers–Ulam-type stability. To proceed this work, we utilize the tools of fixed point theory and nonlinear analysis to investigate the concern theory. We convert fractional differential equation into an integral alternative form with the help of the Greens function. Using the desired function, we studied the existence of a positive solution and uniqueness for proposed class of fractional differential equation. In next section of this work, the author presents stability analysis for considered problem and developed the conditions for Ulam’s type stabilities. Furthermore, we also provided two examples to illustrate our main work.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rodica Luca

AbstractWe investigate the existence of solutions for a system of Riemann–Liouville fractional differential equations with nonlinearities dependent on fractional integrals, subject to coupled nonlocal boundary conditions which contain various fractional derivatives and Riemann–Stieltjes integrals. In the proof of our main results, we use some theorems from the fixed point theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Wei Wang ◽  
Li Huang

The existence of at least one positive solution is established for a class of semipositone fractional differential equations with Riemann-Stieltjes integral boundary condition. The technical approach is mainly based on the fixed-point theory in a cone.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alberto Cabada ◽  
Om Kalthoum Wanassi

Abstract This paper is devoted to study the existence and uniqueness of solutions of a one parameter family of nonlinear Riemann–Liouville fractional differential equations with mixed boundary value conditions. An exhaustive study of the sign of the related Green’s function is carried out. Under suitable assumptions on the asymptotic behavior of the nonlinear part of the equation at zero and at infinity, and by application of the fixed point theory of compact operators defined in suitable cones, it is proved that there exists at least one solution of the considered problem. Moreover, the method of lower and upper solutions is developed and the existence of solutions is deduced by a combination of both techniques. In particular cases, the Banach contraction principle is used to ensure the uniqueness of solutions.


2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Alsaedi ◽  
Soha Hamdan ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractThis paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 421-432
Author(s):  
Rahman ur ◽  
Saeed Ahmad ◽  
Fazal Haq

In the present manuscript we incorporate fractional order Caputo derivative to study a class of non-integer order differential equation. For existence and uniqueness of solution some results from fixed point theory is on our disposal. The method used for exploring these existence results is topological degree method and some auxiliary conditions are developed for stability analysis. For further elaboration an illustrative example is provided in the last part of the research article.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
O. Zentar ◽  
M. Ziane ◽  
S. Khelifa

Abstract The purpose of this work is to investigate the existence of solutions for a system of random differential equations involving the Riemann–Liouville fractional derivative. The existence result is established by means of a random abstract formulation to Sadovskii’s fixed point theorem principle [A. Baliki, J. J. Nieto, A. Ouahab and M. L. Sinacer, Random semilinear system of differential equations with impulses, Fixed Point Theory Appl. 2017 2017, Paper No. 27] combined with a technique based on vector-valued metrics and convergent to zero matrices. An example is also provided to illustrate our result.


Sign in / Sign up

Export Citation Format

Share Document