EQUILIBRIUM ORBITS OF PARTICLES UNDERGOING POYNTING-ROBERTSON EFFECT IN SCHWARZSCHILD SPACETIME

2012 ◽  
Vol 12 ◽  
pp. 247-255
Author(s):  
DONATO BINI ◽  
ANDREA GERALICO

Equilibrium orbits of particles moving on the equatorial plane of a Schwarzschild spacetime are investigated when a test radiation field is superposed to the background gravitational field. The radiation flux is endowed with a fixed but arbitrary (non-zero) angular momentum. It is found that multiple equilibrium circular orbit exist provided that the photon angular momentum is sufficiently high. The stability of such orbits is also analyzed.

2014 ◽  
Vol 29 (29) ◽  
pp. 1450144 ◽  
Author(s):  
Yu Zhang ◽  
Jin-Ling Geng ◽  
En-Kun Li

In this paper, we study the orbital dynamics of the gravitational field of stringy black holes by analyzing the effective potential and the phase plane diagram. By solving the equation of Lagrangian, the general relativistic equations of motion in the gravitational field of stringy black holes are given. It is easy to find that the motion of test particles depends on the energy and angular momentum of the test particles. Using the phase plane analysis method and combining the conditions of the stability, we discuss different types of the test particles' orbits in the gravitational field of stringy black holes. We get the innermost stable circular orbit which occurs at r min = 5.47422 and when the angular momentum b ≤ 4.3887 the test particles will fall into the black hole.


1975 ◽  
Vol 26 (1) ◽  
pp. 20-24
Author(s):  
R Arho

SummaryA unified treatment is given of the orbital and attitude stability of space shuttles in parking orbits (in vacuo) in the earth’s gravitational field. A shuttle in a circular orbit with a principal axis aligned with the horizontal in the orbital plane is found to be in stationary geostatic equilibrium. The demand for stability leads to a condition which must be satisfied by the principal moments of inertia. The stability which is achieved is not asymptotic without control. The stationary state is a stable centre about which a bounded perturbation oscillation without damping may exist.


1983 ◽  
Vol 26 (2) ◽  
pp. 187-188
Author(s):  
Yu D Bulanzhe ◽  
Yu E Nesterikhin ◽  
N P Pariĭskiĭ

2021 ◽  
Vol 19 (2) ◽  
pp. 1677-1695
Author(s):  
Boli Xie ◽  
◽  
Maoxing Liu ◽  
Lei Zhang

<abstract><p>In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that $ R_{0} &lt; 1 $ is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near $ R_{0} = 1 $. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.</p></abstract>


Author(s):  
Yoshio Matsuki ◽  
Petro Bidyuk

In this research we simulated how time can be reversed with a rotating strong gravity. At first, we assumed that the time and the space can be distorted with the presence of a strong gravity, and then we calculated the angular momentum density of the rotating gravitational field. For this simulation we used Einstein’s field equation with spherical polar coordinates and the Euler’s transformation matrix to simulate the rotation. We also assumed that the stress-energy tensor that is placed at the end of the strong gravitational field reflects the intensities of the angular momentum, which is the normal (perpendicular) vector to the rotating axis. The result of the simulation shows that the angular momentum of the rotating strong gravity changes its directions from plus (the future) to minus (the past) and from minus (the past) to plus (the future), depending on the frequency of the rotation.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


2000 ◽  
Vol 175 ◽  
pp. 617-620
Author(s):  
John M. Porter

AbstractIt is assumed that the dynamics of Be star discs is dominated by the effects of viscous stresses. By examining angular momentum transport in discs, we show that many, if not all observed Be star discs should be accretion discs unless (i) the disc is acted upon by another agent (e.g. magnetic fields or the stellar radiation field), or (ii) the disc cools significantly as it flows outwards.


1998 ◽  
Vol 188 ◽  
pp. 413-414
Author(s):  
Y. Watanabe ◽  
J. Fukue

Accretion-disk corona (ADC) is required from observational as well as theoretical reasons. In almost all of traditional studies, however, a stationary corona has been assumed; i.e., the corona gas corotates with the underlying (Keplerian) accretion disk, and the radial motion is ignored. Recently, in the theory of accretion disks a radiative interaction between the gas and the external radiation field has attracted the attention of researchers. In particular the radiation drag between the gas and the external radiation field becomes important from the viewpoint of the angular-momentum removal. We thus examine the effect of radiation drag on the accretion-disk corona above/below the accretion disk (Watanabe, Fukue 1996a, b). We suppose that an accretion disk can be described by the standard disk, and that radiation fields are produced by the central luminous source and the accretion disk, itself. In general an accretion-disk corona under the influence of strong radiation fields dynamically infalls (advected) toward the center.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
G. Rüdiger ◽  
M. Schultz

The stability of conducting Taylor–Couette flows under the presence of toroidal magnetic background fields is considered. For strong enough magnetic amplitudes such magnetohydrodynamic flows are unstable against non-axisymmetric perturbations which may also transport angular momentum. In accordance with the often used diffusion approximation, one expects the angular momentum transport to be vanishing for rigid rotation. In the sense of a non-diffusive  $\unicode[STIX]{x1D6EC}$ effect, however, even for rigidly rotating $z$ -pinches, an axisymmetric angular momentum flux appears which is directed outward (inward) for large (small) magnetic Mach numbers. The internal rotation in a magnetized rotating tank can thus never be uniform. Those particular rotation laws are used to estimate the value of the instability-induced eddy viscosity for which the non-diffusive $\unicode[STIX]{x1D6EC}$ effect and the diffusive shear-induced transport compensate each other. The results provide the Shakura & Sunyaev viscosity ansatz leading to numerical values linearly growing with the applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document