Efficient estimation of reduced-rank partial envelope model in multivariate linear regression

Author(s):  
Jing Zhang ◽  
Zhensheng Huang ◽  
Yan Xiong

In order to further improve the efficiency of parameter estimation and reduce the number of estimated parameters, we adopt dimension reduction ideas of partial envelope model proposed by [Su and Cook, Partial envelopes for efficient estimation in multivariate linear regression, Biometrika 98 (2011) 133–146.] to center on some predictors of special interest. Based on the research results of [Cook et al., Envelopes and reduced-rank regression, Biometrika 102 (2015) 439–456.], we combine partial envelopes with reduced-rank regression to form reduced-rank partial envelope model which can reduce dimension efficiently. This method has the potential to perform better than both. Further, we demonstrate maximum likelihood estimators for the reduced-rank partial envelope model parameters, and exhibit asymptotic distribution and theoretical properties under normality. Meanwhile, we show selections of rank and partial envelope dimension. At last, under the normal and non-normal error distributions, simulation studies are carried out to compare our proposed reduced-rank partial envelope model with the other four methods, including ordinary least squares, reduced-rank regression, partial envelope model and reduced-rank envelope model. A real data analysis is also given to support the theoretic claims. The reduced-rank partial envelope estimators have shown promising performance in extensive simulation studies and real data analysis.

Author(s):  
Saheb Foroutaifar

AbstractThe main objectives of this study were to compare the prediction accuracy of different Bayesian methods for traits with a wide range of genetic architecture using simulation and real data and to assess the sensitivity of these methods to the violation of their assumptions. For the simulation study, different scenarios were implemented based on two traits with low or high heritability and different numbers of QTL and the distribution of their effects. For real data analysis, a German Holstein dataset for milk fat percentage, milk yield, and somatic cell score was used. The simulation results showed that, with the exception of the Bayes R, the other methods were sensitive to changes in the number of QTLs and distribution of QTL effects. Having a distribution of QTL effects, similar to what different Bayesian methods assume for estimating marker effects, did not improve their prediction accuracy. The Bayes B method gave higher or equal accuracy rather than the rest. The real data analysis showed that similar to scenarios with a large number of QTLs in the simulation, there was no difference between the accuracies of the different methods for any of the traits.


Author(s):  
Dmitry Kobak ◽  
Yves Bernaerts ◽  
Marissa A. Weis ◽  
Federico Scala ◽  
Andreas S. Tolias ◽  
...  

2014 ◽  
Vol 518 ◽  
pp. 356-360
Author(s):  
Chang Qing Liu

By using the empirical likelihood method, a testing method is proposed for longitudinal varying coefficient models. Some simulations and a real data analysis are undertaken to investigate the power of the empirical likelihood based testing method.


Mathematics ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 124 ◽  
Author(s):  
Elena Barton ◽  
Basad Al-Sarray ◽  
Stéphane Chrétien ◽  
Kavya Jagan

In this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.


Sign in / Sign up

Export Citation Format

Share Document