Driving Factors of Transportation CO2 Emissions in Beijing: An Analysis from the Perspective of Urban Development

Author(s):  
Sun Yan ◽  
Zhang Yu ◽  
Liu Xuemin

There is a coupling relationship between the development of urban transportation and cities: Urban growth leads to increase in the demand for urban transportation and consequently, a lot of transportation emissions. Therefore, an in-depth understanding of the mechanism behind the driving effect of urban development on transportation emissions is a crucial prerequisite for coordinated development of low-carbon urban transportation and cities. Based on the oil product allocation method, this paper estimates the transportation emission in Beijing from 1995 to 2016. Then based on the understanding of the driving mechanism, this paper applies the urban allometric scaling law to analyze the relationship between city size and transportation emission. Finally, the driving mechanism is analyzed using the STRIPAT model. The results reveal a superlinear relationship between transportation emission in Beijing and the expansion of the city, as the former outgrew the latter. Population size, urbanization, economic size, industrial structure, spatial scale and infrastructure construction are positive driving factors of transportation emission, whereas progress of energy technologies as a negative driving factor can restrain the growth of transportation emission. Urbanization has the most significant impact on urban transportation emission, and economic size contributes the most to the growth of transportation emission. Based on the results, we make a few policy recommendations for low-carbon urban transportation of Beijing, which include: improving transportation efficiency in the process of urbanization; promoting energy conservation and emission reduction while pursuing economic development so as to decouple transportation emission from urban development; restricting unordered urban expansion and updating the concept of transportation infrastructure supply; and developing energy technologies to improve energy efficiency.

Author(s):  
Min Shang ◽  
Ji Luo

The expansion of Xi’an City has caused the consumption of energy and land resources, leading to serious environmental pollution problems. For this purpose, this study was carried out to measure the carbon carrying capacity, net carbon footprint and net carbon footprint pressure index of Xi’an City, and to characterize the carbon sequestration capacity of Xi’an ecosystem, thereby laying a foundation for developing comprehensive and reasonable low-carbon development measures. This study expects to provide a reference for China to develop a low-carbon economy through Tapio decoupling principle. The decoupling relationship between CO2 and driving factors was explored through Tapio decoupling model. The time-series data was used to calculate the carbon footprint. The auto-encoder in deep learning technology was combined with the parallel algorithm in cloud computing. A general multilayer perceptron neural network realized by a parallel BP learning algorithm was proposed based on Map-Reduce on a cloud computing cluster. A partial least squares (PLS) regression model was constructed to analyze driving factors. The results show that in terms of city size, the variable importance in projection (VIP) output of the urbanization rate has a strong inhibitory effect on carbon footprint growth, and the VIP value of permanent population ranks the last; in terms of economic development, the impact of fixed asset investment and added value of the secondary industry on carbon footprint ranks third and fourth. As a result, the marginal effect of carbon footprint is greater than that of economic growth after economic growth reaches a certain stage, revealing that the driving forces and mechanisms can promote the growth of urban space.


Author(s):  
Jonas Sonnenschein

Rapid decarbonization requires additional research, development, and demonstration of low-carbon energy technologies. Various financing instruments are in place to support this development. They are frequently assessed through indicator-based evaluations. There is no standard set of indicators for this purpose. This study looks at the Nordic countries, which are leading countries with respect to eco-innovation. Different indicators to assess financing instruments are analysed with respect to their acceptance, the ease of monitoring, and their robustness. None of the indicators emerges as clearly superior from the analysis. Indicator choice is subject to trade-offs and leaves room for steering evaluation results in a desired direction. The study concludes by discussing potential policy implications of biases in indicator-based evaluation.


Author(s):  
Damilola S Olawuyi

Despite increasing political emphasis across the Middle East on the need to transition to lower carbon, efficient, and environmentally responsible energy systems and economies, legal innovations required to drive such transitions have not been given detailed analysis and consideration. This chapter develops a profile of law and governance innovations required to integrate and balance electricity generated from renewable energy sources (RES-E) with extant electricity grid structures in the Middle East, especially Gulf countries. It discusses the absence of renewable energy laws, the lack of legal frameworks on public–private partnerships, lack of robust pricing and financing, and lack of dedicated RES-E institutional framework. These are the main legal barriers that must be addressed if current national visions of a low-carbon transition across the Middle East are to move from mere political aspirations to realization.


2021 ◽  
Vol 13 (8) ◽  
pp. 4441
Author(s):  
Sharif Shofirun Sharif Ali ◽  
Muhammad Rizal Razman ◽  
Azahan Awang ◽  
M. R. M. Asyraf ◽  
M. R. Ishak ◽  
...  

Despite growing urban electricity consumption, information on actual energy use in the household sector is still limited and causal factors leading to electricity consumption remain speculative due to urban expansion and its growing complexity, particularly in developing countries such as Malaysia. This study aims to examine the critical determinants of household electricity consumption by evaluating the patterns and flows of consumption and analysing relationships and their effects on electricity usage among 620 urban households in Seremban, Malaysia. Results suggest that the average urban household electricity consumption is 648.31 kWh/month; this value continues to grow with the increase in the household monthly income (r = 0.360; p < 0.01) and number of rooms (r = 0.360; p < 0.01) as quality of life improves. A large portion of electricity is allocated for kitchen/home consumption, followed by cooling and lighting. Multiple linear regressions revealed that married households with a high monthly income and living in spacious houses together with three to five people are important predictors of electricity consumption in Seremban. This study empirically identified that the number of rooms is the most critical factor of electricity consumption and strategies to increase energy efficiency, maintain resource sustainability and minimise greenhouse gas threat on the urban ecosystem are vital. Therefore, promoting low carbon initiatives for energy conservation and technology improvement and implementing policies in the domestic sector are essential to achieve the greatest potential energy consumption reduction in urban regions.


Urban Studies ◽  
2021 ◽  
pp. 004209802110059
Author(s):  
Leslie Quitzow ◽  
Friederike Rohde

Current imaginaries of urban smart grid technologies are painting attractive pictures of the kinds of energy futures that are desirable and attainable in cities. Making claims about the future city, the socio-technical imaginaries related to smart grid developments unfold the power to guide urban energy policymaking and implementation practices. This paper analyses how urban smart grid futures are being imagined and co-produced in the city of Berlin, Germany. It explores these imaginaries to show how the politics of Berlin’s urban energy transition are being driven by techno-optimistic visions of the city’s digital modernisation and its ambitions to become a ‘smart city’. The analysis is based on a discourse analysis of relevant urban policy and other documents, as well as interviews with key stakeholders from Berlin’s energy, ICT and urban development sectors, including key experts from three urban laboratories for smart grid development and implementation in the city. It identifies three dominant imaginaries that depict urban smart grid technologies as (a) environmental solution, (b) economic imperative and (c) exciting experimental challenge. The paper concludes that dominant imaginaries of smart grid technologies in the city are grounded in a techno-optimistic approach to urban development that are foreclosing more subtle alternatives or perhaps more radical change towards low-carbon energy systems.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Dingrao Feng ◽  
Wenkai Bao ◽  
Meichen Fu ◽  
Min Zhang ◽  
Yiyu Sun

Land use change plays a key role in terrestrial systems and drives the process of ecological pattern change. It is important to investigate the process of land use change, predict land use patterns, and reveal the characteristics of land use dynamics. In this study, we adopted the Markov model and future land use (FLUS) model to predict the future land use conditions in Xi’an city. Furthermore, we investigated the characteristics of land use change from a novel perspective, i.e., via establishment of a complex network model. This model captured the characteristics of the land use system during different periods. The results indicated that urban expansion and cropland loss played an important role in land use pattern change. The future gravity center of urban development moved along the opposite direction to that from 2000 to 2015 in Xi’an city. Although the rate of urban expansion declined in the future, urban expansion remained the primary driver of land use change. The primary urban development directions were east-southeast (ENE), north-northeast (NNE) and west-southwest (WSW) from 1990 to 2000, 2000 to 2015, and 2015 to 2030, respectively. In fact, cropland played a vital role in land use dynamics regarding all land use types, and the stability of the land use system decreased in the future. Our study provides future land use patterns and a novel perspective to better understand land use change.


This paper examines the main challenges of the processes of space and social policy change present to current urbanization trends of Taiwan. The chapter argues that one of the main challenges is economic growth, increasing integration into the global economy and making Taiwan competitive in the global economy. This process leads to the growth of large urban regions that present many challenges to the urban development in the future. In particular, the paper focuses on the most fragile areas of the extended urban spaces are the rural and urban margins, where urban activities are expanding into densely populated agricultural regions. It is argued that in these areas, local policies should be developed that adapt to local ecosystems. The paper presents lessons of interventions in this field for Ho Chi Minh, Dong Nai and Binh Duong Region for urban expansion.


2020 ◽  
Vol 8 (1) ◽  
pp. 54-60
Author(s):  
V Chitra ◽  
R Gokilavani

Global warming is increasing; therefore, Change is the law of nature. The changes like the environmental and climatic conditions, are one of the most complicated issues faced by the growing society. The survival of the fittest contributes to the idea of adaptation to the changes in society. Today’s business is all about being green, and companies use this as a key strategy to expand its market and impact society. Even the top companies like Amazon to apple are moving in a great way towards green. The economic development lies in the palms of the banks being the financial organizations.Green banking means a financial institution, typically public or quasi-public, that uses innovative financing techniques and market development tools in partnership with the private sector to accelerate deployment of clean energy technologies. Green banks use public funds to leverage private investment in clean energy technologies that, despite being commercially viable, have struggled to establish a widespread presence in consumer markets. Green banks seek to reduce energy costs for ratepayers, stimulate private sector investment and economic activity, and expedite the transition to a low-carbon economy. Adoption of green banking practices will not only be useful for the environment but also benefit in greater operational efficiencies, minimum errors and frauds, and cost reductions in banking activities. The present paper aims to highlightIndian initiatives and adoption by various banks towards green banking in India. Further, an attempt has been made to highlight the major benefits, confronting challenges of Green Banking.


Sign in / Sign up

Export Citation Format

Share Document