Dynamic financial distress prediction based on class-imbalanced data batches

Author(s):  
Jie Sun ◽  
Xin Liu ◽  
Wenguo Ai ◽  
Qianyuan Tian

This study proposes two approaches for dynamic financial distress prediction (FDP) based on class-imbalanced data batches by considering both concept drift and class imbalance. One is based on sliding time window and synthetic minority over-sampling technique (SMOTE) and the other is based on sliding time window and majority class partition. Support vector machine, multiple discriminant analysis (MDA) and logistic regression are used as base classifiers in the experiments on a real-world dataset. The results indicate that the two approaches perform better than the pure dynamic FDP (DFDP) models without class imbalance processing and the static FDP models either with or without class imbalance processing.

2016 ◽  
Vol 25 (3) ◽  
pp. 417-429
Author(s):  
Chong Wu ◽  
Lu Wang ◽  
Zhe Shi

AbstractFor the financial distress prediction model based on support vector machine, there are no theories concerning how to choose a proper kernel function in a data-dependent way. This paper proposes a method of modified kernel function that can availably enhance classification accuracy. We apply an information-geometric method to modifying a kernel that is based on the structure of the Riemannian geometry induced in the input space by the kernel. A conformal transformation of a kernel from input space to higher-dimensional feature space enlarges volume elements locally near support vectors that are situated around the classification boundary and reduce the number of support vectors. This paper takes the Gaussian radial basis function as the internal kernel. Additionally, this paper combines the above method with the theories of standard regularization and non-dimensionalization to construct the new model. In the empirical analysis section, the paper adopts the financial data of Chinese listed companies. It uses five groups of experiments with different parameters to compare the classification accuracy. We can make the conclusion that the model of modified kernel function can effectively reduce the number of support vectors, and improve the classification accuracy.


2018 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Kyoung-jae Kim ◽  
Kichun Lee ◽  
Hyunchul Ahn

Measuring and managing the financial sustainability of the borrowers is crucial to financial institutions for their risk management. As a result, building an effective corporate financial distress prediction model has been an important research topic for a long time. Recently, researchers are exerting themselves to improve the accuracy of financial distress prediction models by applying various business analytics approaches including statistical and artificial intelligence methods. Among them, support vector machines (SVMs) are becoming popular. SVMs require only small training samples and have little possibility of overfitting if model parameters are properly tuned. Nonetheless, SVMs generally show high prediction accuracy since it can deal with complex nonlinear patterns. Despite of these advantages, SVMs are often criticized because their architectural factors are determined by heuristics, such as the parameters of a kernel function and the subsets of appropriate features and instances. In this study, we propose globally optimized SVMs, denoted by GOSVM, a novel hybrid SVM model designed to optimize feature selection, instance selection, and kernel parameters altogether. This study introduces genetic algorithm (GA) in order to simultaneously optimize multiple heterogeneous design factors of SVMs. Our study applies the proposed model to the real-world case for predicting financial distress. Experiments show that the proposed model significantly improves the prediction accuracy of conventional SVMs.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1275
Author(s):  
Dawen Yan ◽  
Guotai Chi ◽  
Kin Keung Lai

In this paper, we propose a new framework of a financial early warning system through combining the unconstrained distributed lag model (DLM) and widely used financial distress prediction models such as the logistic model and the support vector machine (SVM) for the purpose of improving the performance of an early warning system for listed companies in China. We introduce simultaneously the 3~5-period-lagged financial ratios and macroeconomic factors in the consecutive time windows t − 3, t − 4 and t − 5 to the prediction models; thus, the influence of the early continued changes within and outside the company on its financial condition is detected. Further, by introducing lasso penalty into the logistic-distributed lag and SVM-distributed lag frameworks, we implement feature selection and exclude the potentially redundant factors, considering that an original long list of accounting ratios is used in the financial distress prediction context. We conduct a series of comparison analyses to test the predicting performance of the models proposed by this study. The results show that our models outperform logistic, SVM, decision tree and neural network (NN) models in a single time window, which implies that the models incorporating indicator data in multiple time windows convey more information in terms of financial distress prediction when compared with the existing singe time window models.


2011 ◽  
Vol 28 (01) ◽  
pp. 95-109 ◽  
Author(s):  
YU CAO ◽  
GUANGYU WAN ◽  
FUQIANG WANG

Effectively predicting corporate financial distress is an important and challenging issue for companies. The research aims at predicting financial distress using the integrated model of rough set theory (RST) and support vector machine (SVM), in order to find a better early warning method and enhance the prediction accuracy. After several comparative experiments with the dataset of Chinese listed companies, rough set theory is proved to be an effective approach for reducing redundant information. Our results indicate that the SVM performs better than the BPNN when they are used for corporate financial distress prediction.


Sign in / Sign up

Export Citation Format

Share Document