Comparison of Optimization Algorithms for a Tubular Aspiration Robot for Maximum Coverage in Intracerebral Hemorrhage Evacuation

2017 ◽  
Vol 02 (01) ◽  
pp. 1750004 ◽  
Author(s):  
Josephine Granna ◽  
Yi Guo ◽  
Kyle D. Weaver ◽  
Jessica Burgner-Kahrs

Intracerebral hemorrhage evacuation (ICH) using a tubular aspiration robot promises benefits over conventional approaches to release the pressure of an hemorrhage within the brain. The blood of the hemorrhage is evacuated through preplanned, coordinated motion of a flexible, curved, concentric tube that aspirates from within the hemorrhage. To achieve maximum decompression, the curvature of the inner aspirator tube has to be selected such that its workspace covers the hemorrhage. As the use of multiple aspiration tubes sequentially is advisable, one can perform an exhaustive search over all possible aspiration tube shapes as has been previously proposed in the literature. In this paper, we introduce a new optimization algorithm which is computationally more efficient and thus allows for quick optimization during surgery. To demonstrate its performance and compare it to the previously proposed exhaustive search algorithm, we present experimental evaluation results on 175 simulated patient trials.

2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


Author(s):  
Łukasz Knypiński

Purpose The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation optimization processes for permanent magnet motor. Design/methodology/approach A comparative performance analysis was conducted for selected MAs. Optimization calculations were performed for as follows: genetic algorithm (GA), particle swarm optimization algorithm (PSO), bat algorithm, cuckoo search algorithm (CS) and only best individual algorithm (OBI). All of the optimization algorithms were developed as computer scripts. Next, all optimization procedures were applied to search the optimal of the line-start permanent magnet synchronous by the use of the multi-objective objective function. Findings The research results show, that the best statistical efficiency (mean objective function and standard deviation [SD]) is obtained for PSO and CS algorithms. While the best results for several runs are obtained for PSO and GA. The type of the optimization algorithm should be selected taking into account the duration of the single optimization process. In the case of time-consuming processes, algorithms with low SD should be used. Originality/value The new proposed simple nondeterministic algorithm can be also applied for simple optimization calculations. On the basis of the presented simulation results, it is possible to determine the quality of the compared MAs.


Author(s):  
Mengli He ◽  
Yue Li ◽  
Xiaofei Wang ◽  
Zelong Liu

AbstractTo meet the demands of massive connections in the Internet-of-vehicle communications, non-orthogonal multiple access (NOMA) is utilized in the local wireless networks. In NOMA technique, various optimization methods have been proposed to provide optimal resource allocation, but they are limited by computational complexity. Recently, the deep reinforcement learning network is utilized for resource optimization in NOMA system, where a uniform sampled experience replay algorithm is used to reduce the correlation between samples. However, the uniform sampling ignores the importance of sample. To this point, this paper proposes a joint prioritized DQN user grouping and DDPG power allocation algorithm to maximize the system sum rate. At the user grouping stage, a prioritized sampling method based on TD-error (temporal-difference error) is proposed. At the power allocation stage, to deal with the problem that DQN cannot process continuous tasks and needs to quantify power into discrete form, a DDPG network is utilized. Simulation results show that the proposed algorithm with prioritized sampling can increase the learning rate and perform a more stable training process. Compared with the previous DQN algorithm, the proposed method improves the sum rate of the system by 2% and reaches 94% and 93% of the exhaustive search algorithm and optimal iterative power optimization algorithm, respectively. Although the sum rate is improved by only 2%, the computational complexity is reduced by 43% and 64% compared to the exhaustive search algorithm and the optimal iterative power optimization algorithm, respectively.


2021 ◽  
Author(s):  
Mengli He ◽  
Yue Li ◽  
Xiaofei Wang ◽  
Zelong Liu

Abstract To meet the demands of massive connections in the Internet-of-vehicle (IoV) communications, non-orthogonal multiple access (NOMA) is utilized in the local wireless networks. In NOMA technique, power multiplexing and successive interference cancellation techniques are utilized at the transmitter and the receiver respectively to increase system capacity, and user grouping and power allocation are two key issues to ensure the performance enhancement. Various optimization methods have been proposed to provide optimal resource allocation, but they are limited by computational complexity. Recently, the deep reinforcement learning (DRL) network is utilized to solve the resource allocation problem. In a DRL network, an experience replay algorithm is used to reduce the correlation between samples. However, the uniform sampling ignores the importance of sample. Different from conventional methods, this paper proposes a joint prioritized DQN user grouping and DDPG power allocation algorithm to maximize the sum rate of the NOMA system. At the user grouping stage, a prioritized sampling method based on TD-error (temporal-difference error) is proposed to solve the problem of random sampling, where TD-error is used to represent the priority of sample, and the DQN takes samples according to their priorities. In addition, sum tree is used to store the priority to speed up the searching process. At the power allocation stage, to deal with the problem that DQN cannot process continuous tasks and needs to quantify power into discrete form, a DDPG network is utilized to complete power allocation tasks for each user. Simulation results show that the proposed algorithm with prioritized sampling can increase the learning rate and perform a more stable training process. Compared with the previous DQN algorithm, the proposed method improves the sum rate of the system by 2% and reaches 94% and 93% of the exhaustive search algorithm and optimal iterative power optimization algorithm, respectively. While the computational complexity is reduced by 43% and 64% compared with the exhaustive search algorithm and optimal iterative power optimization algorithm, respectively.


2020 ◽  
Vol 10 (18) ◽  
pp. 6173 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Gaurav Dhiman ◽  
O. P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

At present, optimization algorithms are used extensively. One particular type of such algorithms includes random-based heuristic population optimization algorithms, which may be created by modeling scientific phenomena, like, for example, physical processes. The present article proposes a novel optimization algorithm based on Hooke’s law, called the spring search algorithm (SSA), which aims to solve single-objective constrained optimization problems. In the SSA, search agents are weights joined through springs, which, as Hooke’s law states, possess a force that corresponds to its length. The mathematics behind the algorithm are presented in the text. In order to test its functionality, it is executed on 38 established benchmark test functions and weighed against eight other optimization algorithms: a genetic algorithm (GA), a gravitational search algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization (PSO), teaching–learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is employed on five engineering optimization problems. The SSA delivered better fitting results than the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015, in addition to the optimization problems in engineering.


Researchers’ are taking keen interest in Optimization algorithms due to their heuristic and meta-heuristic nature. Heuristic algorithms find the arrangement by utilizing the experimentation strategy. Then again, meta-heuristic algorithms discover the response at a more elevated tier. Several nature-based metaheuristic algorithms are easily accessible. Askarzadeh has introduced the Crow search algorithm and stated that it is meta-heuristic optimization algorithm. The astute conduct of the crow moves CSA. Crows are keen on putting away the abundance nourishment at concealing spots and recuperating it at whatever point it is needed. CSA's previous outcomes show that it can unravel different complex building related optimization issues. There are six compelled building plan issues, and CSA is utilized to upgrade these issues. This paper focuses on a far-reaching investigation of CSA in the diverse application is given with the examination just as the exhibitions of the CSA in the different structure is talked about.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Author(s):  
Mensura Altumbabic ◽  
Marc R. Del Bigio ◽  
Scott Sutherland

ABSTRACT:Background:Transtentorial herniation of large cerebral fragments is a rare phenomenon.Method:Case StudyResults:Examination of the brain of a 35-year-old male showed massive intracerebral hemorrhage resulting in displacement of basal ganglia components into the fourth ventricle.Conclusions:Sufficiently rapid intracerebral bleeding can dissect fragments of cerebrum and displace them long distances across the tentorial opening.


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


Sign in / Sign up

Export Citation Format

Share Document