Dark Field Images of Amorphous Carbon Films in High Resolution Electron Microscopy

1971 ◽  
Vol 10 (2) ◽  
pp. 274-274 ◽  
Author(s):  
Minoru Tanaka
2001 ◽  
Vol 7 (S2) ◽  
pp. 1100-1101
Author(s):  
M. José-Yacamán ◽  
M. Marín-Almazo ◽  
J.A. Ascencio

The field of catalysis is one of the most important areas of the nano-sciences for many years. in deed the goal of having a catalyst, with the maximum active area exposed to a chemical reaction, has produced enormous amount of research in nanoparticles. Particularly, the metal nanoparticles study is a very important field in catalysis. Electron Microscopy is one of the techniques that have played a mayor role on studding nanoparticles. Since bright field images, dark field techniques, to the high-resolution atomic images of nanoparticles and more recently the High Angle Annular dark field images or Z-contrast. However this technique provides only indirect evidence of the atomic arrangements on the particles. High Resolution Electron Microscopy (HREM) still appears as a very powerful technique to study nanoparticles and their internal structure. Among the most interesting metals to study is the palladium, which acts for instance as excellent catalyst for hydrogenation of unsaturated hydrocarbons and has many other applications such as environmental catalysts.


Author(s):  
M. K. Lamvik ◽  
J. M. Pullman ◽  
A. V. Crewe

Negative staining and high resolution shadowing have been extensively used for structural studies in electron microscopy. However, these techniques cover the specimen with a layer of heavy salt or metal, and hence do not allow determination of true mass distribution or localization of specific sites using heavy atom markers. A prerequisite for such structural studies is an examination of unstained specimens. For thin specimens dark field microscopy must be used to obtain adequate contrast. The scanning transmission electron microscope is preferred for such studies since elastic, energyloss, and unscattered electrons can be recorded and analyzed quantitatively to form images with a minimum of beam-induced damage.


1997 ◽  
Vol 3 (4) ◽  
pp. 352-363 ◽  
Author(s):  
C.P. Liu ◽  
R.E. Dunin-Borkowski ◽  
C.B. Boothroyd ◽  
P.D. Brown ◽  
C.J. Humphreys

Abstract: The compositional profile of a narrow layer of InAsxPl−x in InP has been determined using energy-filtered Fresnel contrast analysis, high-resolution electron microscopy (HREM), and high-angle annular dark-field (HAADF) imaging. The consistency of the results obtained using the three techniques is discussed, and conclusions are drawn both about the validity of interpreting the magnitude of Fresnel contrast data quantitatively and about the degree to which high-angle annular dark-field images of such materials are affected by inelastic scattering and strain.


2005 ◽  
Vol 876 ◽  
Author(s):  
Huiping Xu ◽  
Laurent Menard ◽  
Anatoly Frenkel ◽  
Ralph Nuzzo ◽  
Duane Johnson ◽  
...  

AbstractOur direct density function-based simulations of Ru-, Pt- and mixed Ru-Pt clusters on carbon-based supports reveal that substrates can mediate the PtRu5 particles [1]. Oblate structure of PtRu5 on C has been found [2]. Nevertheless, the cluster-substrate interface interactions are still unknown. In this work, we present the applications of combinations of quantitative z-contrast imaging and high resolution electron microscopy in investigating the effect of different substrates and ligand shells on metal particles. Specifically, we developed a relatively new and powerful method to determine numbers of atoms in a nanoparticle as well as three-dimensional structures of particles including size and shape of particles on the substrates by very high angle (~96mrad) annular dark-field (HAADF) imaging [2-4] techniques. Recently, we successfully synthesize icosahedra Au13 clusters with mixed ligands and cuboctahedral Au13 cores with thiol ligands, which have been shown by TEM to be of sub-nanometer size (0.84nm) and highly monodisperse narrow distribution. X-ray absorption and UV-visible spectra indicate many differences between icosahedra and cuboctahedral Au13 cores. Particles with different ligands show different emissions and higher quantum efficiency has been found in Au11 (PPH3) SC12)2C12. We plan to deposit those ligands-protected gold clusters onto different substrates, such as, TiO2 and graphite, etc. Aforementioned analysis procedure will be performed for those particles on the substrates and results will be correlated with that of our simulations and activity properties. This approach will lead to an understanding of the cluster-substrates relationship for consideration in real applications.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Sign in / Sign up

Export Citation Format

Share Document