Germanium and Silicon Film Growth by Low-Energy Ion Beam Deposition

1977 ◽  
Vol 16 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Kunihiro Yagi ◽  
Shozo Tamura ◽  
Takashi Tokuyama
1991 ◽  
Vol 223 ◽  
Author(s):  
S. Shimizu ◽  
N. Sasaki ◽  
S. Ogata ◽  
O. Tsukakoshi ◽  
S. Seki ◽  
...  

ABSTRACTA high-current, low-energy multi-ion beam deposition system has been developed for the fabrication of tailored new materials. This system consists of two ion sources, a dual-sector type mass analyzer and a deceleration system. Several ion species can be extracted successively from the two ion sources by switching the mass analyzer selection. Artificially structured materials, especially having a layered structure, can be grown by the fine control of the growth process of each layer. Ar* ion deceleration characteristics of this ion beam deposition system and preliminary results about the epitaxial growth of Ca film on Si(100) are shown.


1991 ◽  
Vol 236 ◽  
Author(s):  
Nicole Herbots ◽  
O.C. Hellman ◽  
O. Vancauwenberghe

AbstractThree important effects of low energy direct Ion Beam Deposition (IBD) are the athermal incorporation of material into a substrate, the enhancement of atomic mobility in the subsurface, and the modification of growth kinetics it creates. All lead to a significant lowering of the temperature necessary to induce epitaxial growth and chemical reactions. The fundamental understanding and new applications of low temperature kinetics induced by low energy ions in thin film growth and surface processing of semiconductors are reviewed. It is shown that the mechanism of IBD growth can be understood and computed quantitatively using a simple model including ion induced defect generation and sputtering, elastic recombination, thermal diffusion, chemical reactivity, and desorption The energy, temperature and dose dependence of growth rate, epitaxy, and chemical reaction during IBD is found to be controlled by the net recombination rate of interstitials at the surface in the case of epitaxy and unreacted films, and by the balance between ion beam decomposition and phase formation induced by ion beam generated defects in the case of compound thin films. Recent systematic experiments on the formation of oxides and nitrides on Si, Ge/Si(100), heteroepitaxial SixGe1−x/Si(100) and GaAs(100) illustrate applications of this mechanism using IBD in the form of Ion Beam Nitridation (IBN), Ion Beam Oxidation (IBO) and Combined Ion and Molecular beam Deposition (CIMD). It is shown that these techniques enable (1) the formation of conventional phases in conditions never used before, (2) the control and creation of properties via new degrees of freedom such as ion energy and lowered substrate temperatures, and (3) the formation of new metastable heterostructures that cannot be grown by pure thermal means.


1999 ◽  
Vol 198-199 ◽  
pp. 731-733 ◽  
Author(s):  
D.E Joyce ◽  
N.D Telling ◽  
J.A Van den Berg ◽  
D.G Lord ◽  
P.J Grundy

2004 ◽  
Vol 263 (1-4) ◽  
pp. 143-147
Author(s):  
Lifeng Liu ◽  
Nuofu Chen ◽  
Fuqiang Zhang ◽  
Chenlong Chen ◽  
Yanli Li ◽  
...  

1998 ◽  
Vol 13 (8) ◽  
pp. 2315-2320 ◽  
Author(s):  
Y. P. Guo ◽  
K. L. Lam ◽  
K. M. Lui ◽  
R. W. M. Kwok ◽  
K. C. Hui

Ion beam deposition provides an additional control of ion beam energy over the chemical vapor deposition methods. We have used a low energy ion beam of hydrogen and carbon to deposit carbon films on Si(100) wafers. We found that graphitic films, amorphous carbon films, and oriented diamond microcrystallites could be obtained separatedly at different ion beam energies. The mechanism of the formation of the oriented diamond microcrystallites was suggested to include three components: strain release after ion bombardment, hydrogen passivation of sp3 carbon, and hydrogen etching. Such a process can be extended to the heteroepitaxial growth of diamond films.


1986 ◽  
Vol 74 ◽  
Author(s):  
B. R. Appleton ◽  
R. A. Zuhr ◽  
T. S. Noggle ◽  
N. Herbots ◽  
S. J. Pennycook

AbstractThe technique of ion beam deposition (IBD) is utilized to investigate low-energy, ion-induced damage on Si and Ge; to study reactive ion cleaning of Si and Ge; to fabricate amorphous isotopic heterostructures; and to fabricate and study the low-temperature epitaxial deposition of 74Ge on Ge(100), 30Si on Si(100), and 74Ge on Si(100). The techniques of ion scattering/channeling and cross-sectional TEM are combined to characterize the deposits.


Sign in / Sign up

Export Citation Format

Share Document