Magic Numbers of Multivacancy in Crystalline Si: Tight-Binding Studies for the Stability of the Multivacancy

1998 ◽  
Vol 67 (12) ◽  
pp. 4110-4116 ◽  
Author(s):  
Toru Akiyama ◽  
Atsushi Oshiyama ◽  
Osamu Sugino
1987 ◽  
Vol 35 (16) ◽  
pp. 8330-8340 ◽  
Author(s):  
M. C. G. Passeggi ◽  
E. C. Goldberg ◽  
J. Ferrón

2018 ◽  
Vol 9 ◽  
pp. 1512-1526 ◽  
Author(s):  
Tudor D Stanescu ◽  
Anna Sitek ◽  
Andrei Manolescu

We consider core–shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and reduces the value of the critical field associated with the topological quantum phase transition.


2021 ◽  
Vol 99 (1) ◽  
pp. 63-71
Author(s):  
Qiannan Ma ◽  
Weihua Zhu

The density functional tight binding method was used to explore the energetics, electronic structure, and vibrational spectra of pentaerythritol tetranitrate (PETN) nanoparticles (NPs). The surface energy of the PETN NP is anisotropic and its extra energy decreases with the increase of size. The energy bands of the NPs are significantly expanded and the band gaps are narrowed, thus reducing the stability due to nanometer size effect. The surface of the NP is mainly covered by the NO2 group. The high-energy surface may play a role in triggering chemical decomposition. The vibration frequencies of the PETN NPs present a wider distribution than those of the gas and solid phase PETN, which will increase the probability of energy transfer to the molecules in the system and promote the decomposition of PETN. Our results provide a basic understanding from a molecular perspective to the energy properties of nano explosives.


1991 ◽  
Vol 234 ◽  
Author(s):  
P. Pecheur ◽  
G. Toussaint

ABSTRACTThe electronic structure of Ru2Si3 has been calculated with the empirical tight binding method and the recursion procedure. The calculation strongly indicates that there exists a gap in the structure, which makes Ru2Si3 semiconducting, as found experimentally and explains the stability of the chimney-ladder phases for a valence electron concentration per transition metal atom smaller than 14.


1995 ◽  
Vol 402 ◽  
Author(s):  
Leo Miglio ◽  
Francesca Tavazza

AbstractIn this paper we report the cohesion energy curves for different CoSi2 structures calculated by a semiempirical tight binding scheme. We set up a stability hierarchy among them and provide a kinetic model which could explain very recent and apparently contradictory Molecular Beam Epitaxy findings concerning the stability of a new pseudomorphic phase, i.e. the defected CsCl.


2010 ◽  
Vol 150-151 ◽  
pp. 984-987
Author(s):  
Shuai Qin Yu ◽  
Li Hua Dong ◽  
Yan Sheng Yin

The geometric structures and electronic properties of Si doped Fen (n=2-7) clusters have been systematically studied at the BPW91 level in density-functional theory (DFT). Calculated results show that an Si impurity does not change the ground-state structure of small iron clusters and prefers to occupy surface site bonding with iron atoms as many as possible. The second-order energy difference and the vertical ionization potential show that n=4 and 6 are magic numbers within the size range studied, but the maximum value occurs at n=4 for the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital(LUMO). It is found that the hybridization intensity between Si and Fe atoms is relevant to the stability of clusters.


2017 ◽  
Vol 117 (24) ◽  
pp. e25449 ◽  
Author(s):  
Alan Miralrio ◽  
Arturo Hernández-Hernández ◽  
Jose A. Pescador-Rojas ◽  
Enrique Sansores ◽  
Pablo A. López-Pérez ◽  
...  

1997 ◽  
Vol 491 ◽  
Author(s):  
A. Bere ◽  
A. Hairie ◽  
G. Nouet ◽  
E. Paumier

ABSTRACTThe semi-empirical tight-binding method is used to build up an interatomic potential in zinc. Using relaxed structures, the parameters are fitted to the lattice parameters, the elastic constants and the vacancy formation energy. The total energy calculation predicts the stability of the h.c.p. structure. The potential is used to calculate the energy of some extended defects: the basal stacking fault and two twin boundaries.


2021 ◽  
Author(s):  
Vasiliki Chioti ◽  
Kirklin L McWhorter ◽  
Fei Xu ◽  
Philip D Jeffrey ◽  
Katherine Davis ◽  
...  

<div> <div> <div> <p>Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics (GPAs). The latter are canonical GPAs with broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridium difficile. Here, we investigated the three-dimensional structures and functional consequences for both molecules. Equilibrium binding studies showed tight binding by keratinimicin A, but not keratinicyclin B, to the peptidoglycan terminus. Using protein crystallography methods, we solved the X-ray crystal structures of both GPAs, which, in conjunction with DFT calculations, indicate that the inability of keratinicyclin B to bind the peptidoglycan is governed by steric factors. Keratinicyclin B, therefore, interferes with an alternative target to inhibit C. difficile growth, a conclusion confirmed by checkerboard analysis that revealed synergistic activity with vancomycin. Our results set the stage for identifying the molecular target of keratinicyclins and for exploring their therapeutic utility in combination with vancomycin. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document