scholarly journals Efficient Numerical Self-Consistent Mean-Field Approach for Fermionic Many-Body Systems by Polynomial Expansion on Spectral Density

2012 ◽  
Vol 81 (2) ◽  
pp. 024710 ◽  
Author(s):  
Yuki Nagai ◽  
Yukihiro Ota ◽  
Masahiko Machida
2013 ◽  
Vol 12 (04) ◽  
pp. 1350022 ◽  
Author(s):  
T. D. FRANK ◽  
S. MONGKOLSAKULVONG

Two widely used concepts in physics and the life sciences are combined: mean field theory and time-discrete time series modeling. They are merged within the framework of strongly nonlinear stochastic processes, which are processes whose stochastic evolution equations depend self-consistently on process expectation values. Explicitly, a generalized autoregressive (AR) model is presented for an AR process that depends on its process mean value. Criteria for stationarity are derived. The transient dynamics in terms of the relaxation of the first moment and the stationary response to fluctuations in terms of the autocorrelation function are discussed. It is shown that due to the stochastic feedback via the process mean, transient and stationary responses may exhibit qualitatively different temporal patterns. That is, the model offers a time-discrete description of many-body systems that in certain parameter domains feature qualitatively different transient and stationary response dynamics.


1990 ◽  
Vol 42 (13) ◽  
pp. 7894-7897 ◽  
Author(s):  
Lizeng Zhang ◽  
Michael Ma ◽  
Fu Chun Zhang

2018 ◽  
Vol 181 ◽  
pp. 01009
Author(s):  
Jaroslava Hrtankova ◽  
Jiří Mareš

We report on our recent self-consistent calculations of K− nuclear quasi-bound states using K− optical potentials derived from chirally motivated meson-baryon coupled channels models [1, 2]. The K− single-nucleon potentials were supplemented by a phenomenological K− multi-nucleon interaction term introduced to achieve good fits to K− atom data. We demonstrate a substantial impact of the K− multi-nucleon absorption on the widths of K− nuclear states. If such states ever exist in nuclear many-body systems, their widths are excessively large to allow observation.


1969 ◽  
Vol 10 (9) ◽  
pp. 1804-1808
Author(s):  
M. Revzen ◽  
L. E. H. Trainor

Author(s):  
Xindong Wang ◽  
Hai-Ping Cheng

Using a separable many-body variational wavefunction, we formulate a self-consistent effective Hamiltonian theory for fermionic many-body system. The theory is applied to the two-dimensional (2D) Hubbard model as an example to demonstrate its capability and computational effectiveness. Most remarkably for the Hubbard model in 2D, a highly unconventional quadruple-fermion non-Cooper pair order parameter is discovered.


Sign in / Sign up

Export Citation Format

Share Document