scholarly journals Applications of Hadronic Interaction Models to Cosmic Rays, RHIC, and LHC

2011 ◽  
Vol 187 ◽  
pp. 115-122
Author(s):  
Klaus Werner ◽  
Iurii Karpenko ◽  
Tanguy Pierog
2014 ◽  
Vol 53 (10) ◽  
pp. 1456-1469 ◽  
Author(s):  
W.D. Apel ◽  
J.C. Arteaga-Velázquez ◽  
K. Bekk ◽  
M. Bertaina ◽  
J. Blümer ◽  
...  

2019 ◽  
Vol 28 (08) ◽  
pp. 1950097
Author(s):  
Maciej Rybczyński ◽  
Zbigniew Włodarczyk

In order to examine a muon excess observed by the Pierre Auger Observatory, detailed Monte Carlo simulations were carried out for primary protons, iron nuclei and strangelets (hypothetical stable lumps of strange quark matter). We obtained a rough agreement between the simulations and the data for ordinary nuclei without any contribution of strangelets in primary flux of cosmic rays. Our simulations suggest that the shower observables are dominated by details of hadronic interaction models.


2019 ◽  
Vol 208 ◽  
pp. 03002 ◽  
Author(s):  
A. Chiavassa ◽  
W.D. Apel ◽  
J.C. Arteaga-Velázquez ◽  
K. Bekk ◽  
M. Bertaina ◽  
...  

The KASCADE and KASCADE-Grande experiments operated in KIT-Campus North, Karlsruhe (Germany) from 1993 to 2012. The two experiments studied primary cosmic rays in the energy range from 1014 eV to 1018 eV, investigating the change of slope of the spectrum detected at 2 - 4 × 1015 eV, the so called knee. We briefly review the performance of the experiments and then the main results obtained in the operation of both experiments: the test of hadronic interaction models, the all particle primary spectrum, the elemental composition of primary cosmic rays (with the first claim of a knee-like feature of the heavy primaries spectrum) and the search for large scale anisotropies.


2019 ◽  
Vol 208 ◽  
pp. 08004
Author(s):  
R. Takeishi

The origin of ultra-high energy cosmic rays (UHECRs) has been a long-standing mystery. One of the uncertainties in UHECR observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. The number of muons observed at ground level from UHECR induced air showers is expected to depend upon the composition of primary cosmic rays. The MC prediction also depends on hadronic interaction models. One may test the hadronic interaction models by comparing the measured number of muons with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECR by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers which should have high muon purity. A high muon purity condition is imposed that requires the geometry of the shower and relative position of the given station and implies that muons dominate the signal. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08(stat:) ± 0.42(syst:) times larger than the MC prediction with the QGSJET II-03 model for protons. The same feature was also obtained for other hadronic models, such as QGSJET II-04.


2017 ◽  
Vol 798 ◽  
pp. 012045
Author(s):  
L G Dedenko ◽  
A V Lukyashin ◽  
T M Roganova ◽  
G F Fedorova

2019 ◽  
Vol 208 ◽  
pp. 08013
Author(s):  
M. Amenomori ◽  
X. J. Bi ◽  
D. Chen ◽  
T. L. Chen ◽  
W. Y. Chen ◽  
...  

A hybrid experiment has been started by the ASγ experiment at Yangbajing (4300m a.s.l.) in Tibet since May 2009, that consists of a high-energy air-shower-core array (YAC-I) and a high-density air-shower array (Tibet-III). In this paper, we report our results to check the hadronic interaction models SIBYLL2.3, SIBYLL2.1, EPOS-LHC and QGSJETII-04 in the multi-tens TeV energy region using YAC-I+Tibet-III experimental data from May 2009 through January 2010. The effective live time is calculated as 106.05 days. The results show that the description of transverse momentum, inelastic cross-section and inelasticity for the 4 hadronic interaction models is consistent with YAC-I experimental data within 15% systematic errors range in the forward region below 100 TeV. Among them, the EPOS-LHC model is the best hadronic interaction model. Furthermore, we find that the H4a composition model is the best one below the 100 TeV energy region.


2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


2019 ◽  
Vol 210 ◽  
pp. 02004 ◽  
Author(s):  
H.P. Dembinski ◽  
J.C. Arteaga-Velázquez ◽  
L. Cazon ◽  
R. Conceição ◽  
J. Gonzalez ◽  
...  

We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.


Sign in / Sign up

Export Citation Format

Share Document