scholarly journals Mesozoic micropalaeontology of exploration well Elf 55/30–1 from the Fasnet Basin, offshore southwest Ireland

1986 ◽  
Vol 5 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Nigel R. Ainsworth ◽  
Nicola F. Horton

Abstract. The geology, biostratigraphy and palaeoecology of exploration well Elf 55/30–1 in the Fastnet Basin are summarised. The biostratigraphical and ecological distribution of the foraminifera and Ostracoda from the late Triassic, the Lower Jurassic and the Lower Cretaceous are reviewed with reference to microfaunas elsewhere in Europe. Selected microfossil taxa are illustrated.

2021 ◽  
Author(s):  
Jonas Kley ◽  
Thomas Voigt ◽  
Edward R. Sobel ◽  
Johannes Rembe ◽  
Chen Jie

<p>The ca. 35 km long, N-S-trending Altyn Darya valley in Kyrgyzstan exposes a nearly complete cross-section of the External Pamir thrust belt (EP), extending from the active Pamir Frontal Thrust in the north to the Main Pamir Thrust (MPT) and some distance into its hanging-wall. The EP comprises a northward imbricated stack of Carboniferous to Late Neogene rocks. From north to south, young clastics of the Alai Valley foreland basin are overthrust by an intensely folded and thrust-repeated frontal stack of Upper Cretaceous to Paleogene limestone, shale and evaporite. Lower Cretaceous red sandstones first emerge above north- and south-verging thrusts forming a triangle zone whose core comprises spectacular isoclinal folds in Upper Cretaceous strata. Towards the south, another thrust imbricate of Lower Cretaceous is overthrust by Late Triassic-Jurassic sandstones and mafic volcanics which are themselves overthrust by an internally deformed, Carboniferous to Triassic succession of, from bottom to top, greywacke and shale, limestone, volcanoclastic conglomerates, variegated sandstone-shale and pink conglomerates. The Carboniferous units in the south are truncated by the MPT which emplaces a succession of greenschist, marble and chert overlain by a km-thick sequence of metamorphosed and deformed, pillow-bearing lavas of Carboniferous age. Structural geometries and fault preference indicate that the basal detachment of the EP deepens southward very gently, stepping down from a detachment in Upper Cretaceous shale to another one near the base of the Lower Cretaceous and eventually a third one in Triassic shale. Cross-section balancing suggests minimum shortening of 75 km for units in the MPT´s footwall. The displacement on the MPT is poorly constrained due to eroded hanging-wall cutoffs, but must exceed 15 km. The basal detachment cuts into basement no earlier than 100 km from the present thrust front, too far south to link up with the top of the Pamir slab.</p><p>The stratigraphic succession exposed in Altyn Darya can be readily correlated with less deformed and less metamorphosed transects in westernmost China (Qimgan and Kawuke), some 250 km to the east. A marble-greenschist sequence similar to that carried on the MPT in Altyn Darya has been identified there as a tectonic nappe of the Karakul-Mazar unit, emplaced from the south already in an Upper Triassic to Lower Jurassic (Late Cimmerian) event. If the correlation is correct, then the MPT had a Mesozoic precursor structure extending over much of the E-W striking segment of the Northern Pamir.</p>


2019 ◽  
Vol 156 (12) ◽  
pp. 2085-2103 ◽  
Author(s):  
Huimin Ma ◽  
Yu Wang ◽  
Yajuan Huang ◽  
Yueting Xie

AbstractThe NE–NNE-trending Yuan-Ma Basin in central South China, an overprinted basin, is important for understanding the transition in Mesozoic intracontinental deformation in South China from compressional to extensional settings. A detailed sedimentary and structural cross-section across the basin reveals the Upper Triassic – Lower Jurassic black coal-bearing shale, greyish-green sandstone and brick-red claystone, and the Middle Jurassic brick-red sandstone, pebbly sandstone and conglomerate in the eastern segment of the basin. The Lower Cretaceous brick-red coarse sandstone, pebbly sandstone and siltstone occurred in the western and central segments, as well as fault breccia and Lower Cretaceous sandstone at the western margin of the basin. Detrital zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry shows that the magmatic and metamorphic zircons yield significant age clusters at 900–700, 500–350 and 300–150 Ma, as well a minor age cluster at 120–100 Ma. Synthesizing the stratigraphic sequences, structures, isotopic dating results and palaeocurrent data, we infer that the Yuan-Ma Basin experienced three evolutionary stages and tectonic settings: (1) during Late Triassic – Early Jurassic time, the Yuan-Ma Basin was related to the diachronous progressive intracontinental deformation as a result of the early Mesozoic Xuefeng intracontinental orogeny in South China; (2) during Middle–Late Jurassic time, the Yuan-Ma Basin was related to intracontinental compression in South China; and (3) during late Early Cretaceous time, the Yuan-Ma Basin was constrained by the intracontinental extension that occurred in eastern China. These three stages, a result of various tectonic regimes, caused the intracontinental deformation that was controlled by the evolution of the continents and their margins.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 573
Author(s):  
Shahid Iqbal ◽  
Michael Wagreich ◽  
Mehwish Bibi ◽  
Irfan U. Jan ◽  
Susanne Gier

The Salt Range, in Pakistan, preserves an insightful sedimentary record of passive margin dynamics along the NW margin of the Indian Plate during the Mesozoic. This study develops provenance analyses of the Upper Triassic (Kingriali Formation) to Lower Jurassic (Datta Formation) siliciclastics from the Salt and Trans Indus ranges based on outcrop analysis, petrography, bulk sediment elemental geochemistry, and heavy-mineral data. The sandstones are texturally and compositionally mature quartz arenites and the conglomerates are quartz rich oligomictic conglomerates. Geochemical proxies support sediment derivation from acidic sources and deposition under a passive margin setting. The transparent heavy mineral suite consists of zircon, tourmaline, and rutile (ZTR) with minor staurolite in the Triassic strata that diminishes in the Jurassic strata. Together, these data indicate that the sediments were supplied by erosion of the older siliciclastics of the eastern Salt Range and adjoining areas of the Indian Plate. The proportion of recycled component exceeds the previous literature estimates for direct sediment derivation from the Indian Shield. A possible increase in detritus supply from the Salt Range itself indicates notably different conditions of sediment generation, during the Triassic–Jurassic transition. The present results suggest that, during the Triassic–Jurassic transition in the Salt Range, direct sediment supply from the Indian Shield was probably reduced and the Triassic and older siliciclastics were exhumed on an elevated passive margin and reworked by a locally established fluvio-deltaic system. The sediment transport had a north-northwestward trend parallel to the northwestern Tethyan margin of the Indian Plate and normal to its opening axis. During the Late Triassic, hot and arid hot-house palaeoclimate prevailed in the area that gave way to a hot and humid greenhouse palaeoclimate across the Triassic–Jurassic Boundary. Sedimentological similarity between the Salt Range succession and the Neo-Tethyan succession exposed to the east on the northern Indian passive Neo-Tethyan margin suggests a possible westward extension of this margin.


2004 ◽  
Vol 41 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Nathan T Petersen ◽  
Paul L Smith ◽  
James K Mortensen ◽  
Robert A Creaser ◽  
Howard W Tipper

Jurassic sedimentary rocks of southern to central Quesnellia record the history of the Quesnellian magmatic arc and reflect increasing continental influence throughout the Jurassic history of the terrane. Standard petrographic point counts, geochemistry, Sm–Nd isotopes and detrital zircon geochronology, were employed to study provenance of rocks obtained from three areas of the terrane. Lower Jurassic sedimentary rocks, classified by inferred proximity to their source areas as proximal or proximal basin are derived from an arc source area. Sandstones of this age are immature. The rocks are geochemically and isotopically primitive. Detrital zircon populations, based on a limited number of analyses, have homogeneous Late Triassic or Early Jurassic ages, reflecting local derivation from Quesnellian arc sources. Middle Jurassic proximal and proximal basin sedimentary rocks show a trend toward more evolved mature sediments and evolved geochemical characteristics. The sandstones show a change to more mature grain components when compared with Lower Jurassic sedimentary rocks. There is a decrease in εNdT values of the sedimentary rocks and Proterozoic detrital zircon grains are present. This change is probably due to a combination of two factors: (1) pre-Middle Jurassic erosion of the Late Triassic – Early Jurassic arc of Quesnellia, making it a less dominant source, and (2) the increase in importance of the eastern parts of Quesnellia and the pericratonic terranes, such as Kootenay Terrane, both with characteristically more evolved isotopic values. Basin shale environments throughout the Jurassic show continental influence that is reflected in the evolved geochemistry and Sm–Nd isotopes of the sedimentary rocks. The data suggest southern Quesnellia received material from the North American continent throughout the Jurassic but that this continental influence was diluted by proximal arc sources in the rocks of proximal derivation. The presence of continent-derived material in the distal sedimentary rocks of this study suggests that southern Quesnellia is comparable to known pericratonic terranes.


2017 ◽  
Author(s):  
Paul M Barrett ◽  
Tim Broderick ◽  
Kimberley Chapelle ◽  
Jonah Choiniere ◽  
Steve Edwards ◽  
...  

Southern Africa provides critical information on Late Triassic–Early Jurassic terrestrial tetrapod faunas. Most of the localities in this region are in South Africa and Lesotho, but preliminary work in Zimbabwe has revealed significant potential. Early Jurassic Zimbabwean localities have yielded the basal sauropodomorph Massospondylus, the early sauropod Vulcanodon and theropod material. Late Triassic localities are also known, but have yielded only fragmentary specimens thus far. In early 2017, a joint South African-Zimbabwean-UK team conducted fieldwork in the upper Karoo-aged deposits along the shores of Lake Kariba, northern Zimbabwe (Mid-Zambesi Basin). We relocated the Vulcanodon type locality on Island 126/127 and found that, contrary to previous reports suggesting a Toarcian age, the quarry was in a horizon pre-dating the onset of Drakensburg volcanism (= Batoka Basalts). It is situated instead within the earlier Lower Jurassic Forest Sandstone. This indicates that Vulcanodon is 10–15 million years older than thought previously, recalibrating several nodes within Sauropoda and indicating extensive overlap between true sauropods and 'prosauropods'. Other new vertebrate localities show that sauropodomorphs are present in the Forest Sandstone and upper Tashinga (Late Triassic) formations, but a grey mudstone facies within the Pebbly Arkose Member of the latter unit yields a more aquatic fauna, including lungfish and phytosaurs, but lacking sauropodomorphs. The phytosaur occurrence is the first in Africa south of the Sahara. Faunal and sedimentological evidence indicates that the Late Triassic and Early Jurassic sites in this region were deposited under more mesic environments than their lateral equivalents in South Africa.


2020 ◽  
Vol 94 (4) ◽  
pp. 748-757
Author(s):  
Jobst Wendt

AbstractIn contrast to almost all other invertebrate phyla that constructed biomineralized skeletons during the “Cambrian explosion” and maintained them during the entire fossil record, ascidian tunicates evolved this protective and stabilizing advantage only during the Permian, although soft-bodied representatives of this subphylum made their first appearance already in the early Cambrian. It remains enigmatic why these compound calcareous skeletons persisted only until the Late Triassic, subsequently followed by less-rigid internal skeletons from the Lower Jurassic onwards, which consist of scattered isolated spicules only. In addition to recently described aragonitic ascidian exoskeletons from the Permian and Triassic, new discoveries of similar, but colonial ascidian compound endoskeletons in the lower Carnian exhibit a short-living branch of this group, which moreover contain the first indubitable calcareous spicules. The latter are embedded in the solid endoskeleton, which is composed of polygonal aragonitic plates with smooth outer and zigzag lined inner boundaries. They consist of irregular, parallel (orthogonal), or fan-shaped (clinogonal) arrangements of acicular aragonite crystals. The following taxa are described as new: order Cassianomorpha new order with the family Cassianosomidae new family and the genus Toscanisoma new genus with the species T. multipartitum new species and T. triplicatum new species.UUID: http://zoobank.org/03555353-cdab-42e8-8e99-9bfce15fa249


2005 ◽  
Vol 42 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Ursula B Göhlich ◽  
Luis M Chiappe ◽  
James M Clark ◽  
Hans-Dieter Sues

Macelognathus vagans was described by O.C. Marsh in 1884, based on a mandibular symphysis from the Upper Jurassic Morrison Formation of Wyoming. Often considered a dinosaur but later tentatively referred to the Crocodylia, its phylogenetic identity has until now been enigmatic. New material of this species from the Morrison Formation of western Colorado demonstrates its affinities with basal crocodylomorphs commonly grouped together as the Sphenosuchia, which are characterized by a gracile postcranial skeleton with erect limb posture. Macelognathus shares features with Kayentasuchus from the Lower Jurassic Kayenta Formation of Arizona and Hallopus, which may be from the Morrison Formation of eastern Colorado. The new material constitutes the youngest definitive occurrence of a sphenosuchian, previously known from the Late Triassic to the Middle or Late? Jurassic.


Sign in / Sign up

Export Citation Format

Share Document