Step-wise uncertainty reduction in time-lapse seismic interpretation using multi-attribute analysis

2021 ◽  
pp. petgeo2020-087
Author(s):  
Masoud Maleki ◽  
Shahram Danaei ◽  
Felipe Bruno Mesquita da Silva ◽  
Alessandra Davolio ◽  
Denis José Schiozer

Recently, time-lapse seismic (4D seismic) has been steadily used to demonstrate the relation between field depletion and 4D seismic response, subsequently to have more efficient field management. A key component of the reservoir monitoring is the knowledge of fluid movement and pressure variations. This information is vital to assist infill drillings and a trustworthy source to update reservoir models, consequently improving model-based reservoir management and decision-making process. However, in practice the 4D seismic interpretation of reservoirs with multipart production regime possesses ambiguities through different levels of uncertainty. Complex nature of some 4D seismic signals emphasizes the roles of competing effects, geology, rock and fluid interactions. Hence, a reliable 4D interpretation requires an interdisciplinary approach entailing data analysis and insights from geophysics, engineering and geology. In this research, a step-wise workflow was introduced to reduce uncertainties in the 4D seismic interpretation and provide diagnoses to perform better reservoir surveillance. In parallel, the workflow expresses the use of engineering data analysis to conduct a consistent interpretation and encompasses the 3D and 4D seismic attributes with engineering data analysis. This study is implemented in a Brazilian heavy-oil offshore field where production started in 2013. The field experienced intense production activity up to 2016, making the deep-water field an ideal candidate to explore the challenges in interpreting complex 4D signals. Beyond these challenges, significant understanding of reservoir behavior is obtained and suggestions are made to improve the reservoir simulation model, which could support reservoir engineers with data assimilation applications.

2018 ◽  
Vol 6 (3) ◽  
pp. T601-T611
Author(s):  
Juliana Maia Carvalho dos Santos ◽  
Alessandra Davolio ◽  
Denis Jose Schiozer ◽  
Colin MacBeth

Time-lapse (or 4D) seismic attributes are extensively used as inputs to history matching workflows. However, this integration can potentially bring problems if performed incorrectly. Some of the uncertainties regarding seismic acquisition, processing, and interpretation can be inadvertently incorporated into the reservoir simulation model yielding an erroneous production forecast. Very often, the information provided by 4D seismic can be noisy or ambiguous. For this reason, it is necessary to estimate the level of confidence on the data prior to its transfer to the simulation model process. The methodology presented in this paper aims to diagnose which information from 4D seismic that we are confident enough to include in the model. Two passes of seismic interpretation are proposed: the first, intended to understand the character and quality of the seismic data and, the second, to compare the simulation-to-seismic synthetic response with the observed seismic signal. The methodology is applied to the Norne field benchmark case in which we find several examples of inconsistencies between the synthetic and real responses and we evaluate whether these are caused by a simulation model inaccuracy or by uncertainties in the actual observed seismic. After a careful qualitative and semiquantitative analysis, the confidence level of the interpretation is determined. Simulation model updates can be suggested according to the outcome from this analysis. The main contribution of this work is to introduce a diagnostic step that classifies the seismic interpretation reliability considering the uncertainties inherent in these data. The results indicate that a medium to high interpretation confidence can be achieved even for poorly repeated data.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 1077-1088 ◽  
Author(s):  
F.. Sedighi ◽  
K.D.. D. Stephen

Summary Seismic history matching is the process of modifying a reservoir simulation model to reproduce the observed production data in addition to information gained through time-lapse (4D) seismic data. The search for good predictions requires that many models be generated, particularly if there is an interaction between the properties that we change and their effect on the misfit to observed data. In this paper, we introduce a method of improving search efficiency by estimating such interactions and partitioning the set of unknowns into noninteracting subspaces. We use regression analysis to identify the subspaces, which are then searched separately but simultaneously with an adapted version of the quasiglobal stochastic neighborhood algorithm. We have applied this approach to the Schiehallion field, located on the UK continental shelf. The field model, supplied by the operator, contains a large number of barriers that affect flow at different times during production, and their transmissibilities are highly uncertain. We find that we can successfully represent the misfit function as a second-order polynomial dependent on changes in barrier transmissibility. First, this enables us to identify the most important barriers, and, second, we can modify their transmissibilities efficiently by searching subgroups of the parameter space. Once the regression analysis has been performed, we reduce the number of models required to find a good match by an order of magnitude. By using 4D seismic data to condition saturation and pressure changes in history matching effectively, we have gained a greater insight into reservoir behavior and have been able to predict flow more accurately with an efficient inversion tool. We can now determine unswept areas and make better business decisions.


2015 ◽  
Vol 3 (2) ◽  
pp. SP35-SP52 ◽  
Author(s):  
Zhen Yin ◽  
Milana Ayzenberg ◽  
Colin MacBeth ◽  
Tao Feng ◽  
Romain Chassagne

We have found that dynamic reservoir interpretation can be enhanced by directly correlating the seismic amplitudes from many repeated 4D seismic monitors to the field production and injection history from wells. This “well2seis” crosscorrelation was achieved by defining a linear relationship between the 4D seismic signals and changes in the cumulative fluid volumes at the wells. We also found that the distribution of the well2seis correlation attribute can reveal key reservoir connectivity features, such as the seal of faults, fluid pathways, and communication between neighboring compartments. It can therefore enhance dynamic reservoir description. Based on this enhanced interpretation, we have developed a workflow to close the loop between 4D seismic and reservoir engineering data. First, the reservoir model was directly updated using quantitative information extracted from multiple surveys, by positioning and placing known barriers or conduits to flow. After this process, a seismic-assisted history matching was applied using the well2seis attribute to honor data from the seismic and engineering domains, while remaining consistent with the fault interpretation. Compared to traditional history matching, that attempts to match individual seismic time-lapse amplitudes and production data, our approach used an attribute that condensed available data to effectively enhance the signal. In addition, the approach was observed to improve the history-matching efficiency as well as model predictability. The proposed methodology was applied to a North Sea-field, the production of which was controlled by fault compartmentalization. It successfully detected the communication pathways and sealing property of key faults that are known to be major factors in influencing reservoir development. After history matching, the desired loops were closed by efficiently updating the reservoir simulation model, and this was indicated by a 90% reduction in the misfit errors and 89% lowering of the corresponding uncertainty bounds.


2015 ◽  
Vol 3 (2) ◽  
pp. SP11-SP19 ◽  
Author(s):  
Oghogho Effiom ◽  
Robert Maskall ◽  
Edwin Quadt ◽  
Kazeem A. Lawal ◽  
Raphael Afolabi ◽  
...  

To improve the management of a Nigerian deep water field, two vintages of 4D data have been acquired since field start up in 2005. The first Nigerian 4D seismic (monitor-I) in water depths greater than 1000 m was taken in this field in 2008, and the second monitor (monitor-II) was acquired in 2012. Compared to monitor-I, better geometric repeatability was achieved in monitor-II as the lessons learned from monitor-I were incorporated to achieve better results. The final normalized root mean square of monitor-II fast-track volume was 12% compared to 25% for monitor-I. The improved quality is attributed to improvements in the acquisition methodology and prediction of the effects of currents. Seismic interpretation of the field revealed two distinct turbidite depositional settings: (1) An unconfined amalgamated lobe system with low relief, high net-to-gross reservoir sands that exhibit fairly homogeneous water flooding patterns on 4D and (2) an erosional canyon setting, filled with meander belts having a more complex 3D connectivity within and between the channels resulting in a challenging 4D interpretation. The time lapse data were instrumental for better understanding the reservoir architecture, enabling improved wells and reservoir management practices, the identification of infill opportunities, and more mature subsurface models. We evaluated the seismic acquisition and the 4D interpretation of the deepwater 4D seismic data, highlighting the merits of a multidisciplinary collaborative understanding to time-lapse seismic. At present, the value of information of the 4D monitor-II is conservatively estimated at 101 million United States dollars, equivalent to the cost of a well in this deepwater operating environment.


2018 ◽  
Vol 37 (10) ◽  
pp. 754-762 ◽  
Author(s):  
Masoud Maleki ◽  
Alessandra Davolio ◽  
Denis José Schiozer

2020 ◽  
Vol 31 (11) ◽  
pp. 461-466
Author(s):  
Matthew Armstrong

Levels of physical activity tend to be reduced in people with COPD. Matthew Armstrong discusses the benefits of improving activity levels in this group of patients It is well acknowledged that levels of physical activity in patients with chronic obstructive pulmonary disease (COPD) are considerably lower than healthy-age matched individuals, with physical inactivity recognised as a key predictor of hospitalisation and mortality. Pulmonary rehabilitation (PR) has become a major tool for managing symptoms of COPD and the associated extra-pulmonary effects. However, inconsistencies surrounding its effectiveness in terms of improving physical activity remain due to the complex nature of physical activity. To overcome these inconsistencies, both pharmacological and behavioural interventions have been documented to aid improvements in physical activity, with behavioural interventions alongside PR found to be the most effective tool to promote levels of physical activity. Health professionals must therefore look to incorporate an interdisciplinary approach in order to best achieve improvements in physical activity levels in patients with COPD.


2016 ◽  
Vol 19 (03) ◽  
pp. 391-402
Author(s):  
Sunday Amoyedo ◽  
Emmanuel Ekut ◽  
Rasaki Salami ◽  
Liliana Goncalves-Ferreira ◽  
Pascal Desegaulx

Summary This paper presents case studies focused on the interpretation and integration of seismic reservoir monitoring from several fields in conventional offshore and deepwater Niger Delta. The fields are characterized by different geological settings and development-maturity stages. We show different applications varying from qualitative to quantitative use of time-lapse (4D) seismic information. In the first case study, which is in shallow water, the field has specific reservoir-development challenges, simple geology, and is in phased development. On this field, 4D seismic, which was acquired several years ago, is characterized by poor seismic repeatability. Nevertheless, we show that because of improvements from seismic reprocessing, 4D seismic makes qualitative contributions to the ongoing field development. In the second case study, the field is characterized by complex geological settings. The 4D seismic is affected by overburden with strong lateral variations in velocity and steeply dipping structure (up to 40°). Prestack-depth-imaging (PSDM) 4D seismic is used in a more-qualitative manner to monitor gas injection, validate the geologic/reservoir models, optimize infill injector placement, and consequently, enhance field-development economics. The third case study presents a deep offshore field characterized by a complex depositional system for some reservoirs. In this example, good 4D-seismic repeatability (sum of source- and receiver-placement differences between surveys, dS+dR) is achieved, leading to an increased quantitative use of 4D monitoring for the assessment of sand/sand communication, mapping of oil/water (OWC) front, pressure evolution, and dynamic calibration of petro-elastic model (PEM), and also as a seismic-based production-logging tool. In addition, 4D seismic is used to update seismic interpretation, provide a better understanding of internal architecture of the reservoirs units, and, thereby, yield a more-robust reservoir model. The 4D seismic in this field is a key tool for field-development optimization and reservoir management. The last case study illustrates the need for seismic-feasibility studies to detect 4D responses related to production. In addition to assessing the impact of the field environment on the 4D- seismic signal, these studies also help in choosing the optimum seismic-survey type, design, and acquisition parameters. These studies would possibly lead to the adoption of new technologies such as broad-band streamer or nodes acquisition in the near future.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


2021 ◽  
pp. petgeo2021-016
Author(s):  
K. Bredesen ◽  
M. Lorentzen ◽  
L. Nielsen ◽  
K. Mosegaard

A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells forms the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveals that the seismic signal is more governed by porosity than water saturation changes at near-offset (or small-angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data has some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Zoann Low ◽  
Parimal Arjun Patil ◽  
Debasis Priyadarshan Das ◽  
Prasanna Chidambaram ◽  
...  

Abstract Monitoring of CO2 plume migration in a depleted carbonate reservoir is challenging and demand comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic exhibits the migration of CO2 plume within geological storage but in the area affected by gas chimney due to poor signal-to-noise ratio (SNR), uncertainty in identifying and interpretation of CO2 plume gets exaggerated. High resolution 3D vertical seismic profile (VSP) survey using distributed acoustic sensor (DAS) technology fulfil the objective of obtaining the detailed subsurface image which include CO2 plume migration, reservoir architecture, sub-seismic faults and fracture networks as well as the caprock. Integration of quantitative geophysics and dynamic simulation with illumination modelling dignify the capabilities of 3D DAS-VSP for CO2 plume migration monitoring. The storage site has been studied in detailed and an integrated coupled dynamic simulation were performed and results were integrated with seismic forward modeling to demonstrate the CO2 plume migration with in reservoir and its impact on seismic amplitude. 3D VSP illumination modelling was carried out by integrating reservoir and overburden interpretations, acoustic logs and seismic velocity to illustrate the subsurface coverage area at top of reservoir. Several acquisition survey geometries were simulated based on different source carpet size for effective surface source contribution for subsurface illumination and results were analyzed to design the 3D VSP survey for early CO2 plume migration monitoring. The illumination simulation was integrated with dynamic simulation for fullfield CO2 plume migration monitoring with 3D DAS-VSP by incorporating Pseudo wells illumination analysis. Results of integrated coupled dynamic simulation and 4D seismic feasibility were analyzed for selection of best well location to deploy the multi fiber optic sensor system (M-FOSS) technology. Amplitude response of synthetic AVO (amplitude vs offsets) gathers at the top of carbonate reservoir were analyzed for near, mid and far angle stacks with respect to pre-production as well as pre-injection reservoir conditions. Observed promising results of distinguishable 25-30% of CO2 saturation in depleted reservoir from 4D time-lapse seismic envisage the application of 3D DAS-VSP acquisition. The source patch analysis of 3D VSP illumination modelling results indicate that a source carpet of 6km×6km would be cos-effectively sufficient to produce a maximum of approximately 2km in diameter subsurface illumination at the top of the reservoir. The Pseudo wells illumination analysis results show that current planned injection wells would probably able to monitor early CO2 injection but for the fullfield monitoring additional monitoring wells or a hybrid survey of VSP and surface seismic would be required. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from 3D DAS-VSP will reduce the associated risks.


Sign in / Sign up

Export Citation Format

Share Document