scholarly journals Deep structure of the Porcupine Basin from wide-angle seismic data

2016 ◽  
Vol 8 (1) ◽  
pp. 199-209 ◽  
Author(s):  
Louise Watremez ◽  
Manel Prada ◽  
Tim Minshull ◽  
Brian O'Reilly ◽  
Chen Chen ◽  
...  

AbstractThe Porcupine Basin, part of the frontier petroleum exploration province west of Ireland, has an extended history that commenced prior to the opening of the North Atlantic Ocean. Lithospheric stretching factors have previously been estimated to increase from <2 in the north to >6 in the south of the basin. Thus, it is an ideal location to study the processes leading to hyper-extension on continental margins. The Porcupine Median Ridge (PMR) is located in the south of the basin and has been alternatively interpreted as a volcanic feature, a serpentinite mud diapir or a tilted block of continental crust. Each of these interpretations has different implications for the thermal history of the basin. We present results from travel-time tomographic modelling of two approximately 300 km-long wide-angle seismic profiles across the northern and southern parts of the basin. Our results show: (1) the geometry of the crust, with maximum crustal stretching factors of up to 6 and 10 along the northern and southern profiles, respectively; (2) asymmetry of the basin structures, suggesting some simple shear during extension; (3) low velocities beneath the Moho that could represent either partially serpentinized mantle or mafic under-plating; and (4) a possible igneous composition of the PMR.


2005 ◽  
Vol 406 (3-4) ◽  
pp. 141-163 ◽  
Author(s):  
I. Contrucci ◽  
A. Mauffret ◽  
C. Brunet ◽  
A. Nercessian ◽  
N. Béthoux ◽  
...  


2021 ◽  
Author(s):  
Frauke Klingelhoefer ◽  
Youssef Biari ◽  
Dieter Franke ◽  
Thomas Funck ◽  
Lies Loncke ◽  
...  

&lt;p&gt;In order to study opening mechanisms and their variation in the Atlantic ocean basins, we compiled existing wide-angle and deep seismic data along conjugate margins and performed plate tectonic reconstructions of the original opening geometries to define conjugate margin pairs. A total of 23 published wide-angle seismic profiles from the different margins of the Atlantic basin were digitized, and reconstructions at break-up and during early stages of opening were performed. Main objectives were to understand how magma-rich and magma-poor margins develop and to define more precisely the role of geologic inheritance (i.e., preexisting structures) in the break-up phase. At magma-poor margins, a phase of tectonic opening without accretion of a typical oceanic crust often follows initial rupture, leading to exhumation of serpentinized upper mantle material. Along volcanic margins the first oceanic crust can be overthickened, and both over- and underlain by volcanic products. The first proto-oceanic crust is often accreted at slow to very slow rates, and is thus of varied thickness, mantle content and volcanic overprint. Accretion of oceanic crust at slow to very slow spreading rates can also be highly asymmetric, so the proto oceanic crust at each side of conjugate margin pairs can differ. Another major aim of this study was to understand the mechanisms of formation and origins of transform marginal plateaus. These are bathymetric highs located at the border of two ocean basins of different ages and are mostly characterized by one or several volcanic phase during their formation. They often form conjugate pairs along a transform margin as it evolves and might have been the last land bridges during breakup, thereby influencing mammal migration and proto-oceanic currents in very young basins. At these plateaus, volcanic eruptions can lead to deposits of (at least in part subaerial) lava flows several km thick, better known by their geophysical signature as seaward dipping reflectors. Continental crust, if present, is heavily modified by volcanic intrusions. These marginal plateaus might form when rifting stops at barriers introduced by the transform margin, leading to the accumulation of heat in the mantle and increased volcanism directly before or after the cessation of rifting.&lt;/p&gt;



2019 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Dietrich Lange ◽  
Martin Thowart ◽  
...  

Abstract. The Ligurian Basin is located in the Mediterranean Sea to the north-west of Corsica at the transition from the western Alpine orogen to the Apennine system and was generated by the south-eastward trench retreat of the Apennines-Calabrian subduction zone. Late Oligocene to Miocene rifting caused continental extension and subsidence, leading to the opening of the basin. Yet, it still remains enigmatic if rifting caused continental break-up and seafloor spreading. To reveal its lithospheric architecture, we acquired a state of the art seismic refraction and wide-angle reflection profile in the Ligurian Basin. The seismic line was recorded in the framework of SPP2017 4D-MB, the German component of the European AlpArray initiative, and trends in a NE-SW direction at the centre of the Ligurian Basin, roughly parallel to the French coastline. The seismic data recorded on the newly developed GEOLOG recorder, designed at GEOMAR, are dominated by sedimentary refractions and show mantle Pn arrivals at offsets of up to 70 km and a very prominent wide-angle Moho reflection. The main features share several characteristics (i.e. offset range, continuity) generally associated with continental settings rather than documenting oceanic crust emplaced by seafloor spreading. Seismic tomography results are augmented by gravity data and yield a 7.5–8 km thick sedimentary cover which is directly underlain by serpentinised mantle material at the south-western end of the profile. The acoustic basement at the north-eastern termination is interpreted to be continental crust, thickening towards the NE. Our study reveals that the oceanic domain does not extend as far north as previously assumed and that extension led to extreme continental thinning and exhumation of sub-continental mantle which eventually became serpentinised.



Author(s):  
A. Leprêtre ◽  
P. Schnürle ◽  
M. Evain ◽  
F. Verrier ◽  
D. Moorcroft ◽  
...  


Author(s):  
L. Halyavina ◽  
N. Zalivadnyj

The functioning of the GPS station and regular astrometric observations with a prismatic astrolabe in Poltava provides series of local displacements of the earth's crust and plumb line in time, characterizing the changes in the gravitational field. The analysis of the N-component of the earth's crust movement and the displacement of the meridional projection of the plumb line was carried out on the basis of GPS data and from observations on the astrolabe, respectively, for the period 2002-2020. Comparison of the trends of these series showed that their shifts occur in opposite directions. It is noted that the movement of the point occurs in the northern direction at a speed of +0.3mm/yr, and the displacement of the plumb line - to the south, at a speed of -2.6mas/year. Similarly, an abrupt displacement of the N-component to the north by + 2mm at the turn of 2014 was accompanied by a displacement of the plumb line to the south by approximately -50 mas. These facts can be explained within the framework of the hypothesis of the existence of a deep structure in the vicinity of Poltava, in which a significant change in mass occurs. The spectra of both series show the presence of cyclicities with close periods: about 3.2, 2.8, 1.0, 0.5, and 0.3 yr. It is known that harmonics with those periods are present in many astrometric series. The geodynamic interpretation of the presented facts requires additional confirmation in observations of neighboring GPS stations, as well as a theoretical explanation and justification.



1976 ◽  
Vol 54 (9) ◽  
pp. 1538-1541
Author(s):  
R. E. Zurbrigg ◽  
W. B. Scott

A new myctophid species, Diaphus hudsoni, was captured in the South Atlantic Ocean, and is described. It is similar to Diaphus subtilis Nafpaktitis, which occurs in the North Atlantic Ocean, but is definitely distinct with its slender, more numerous gill rakers (total 23–25), and non-continuous AOp–Prc series. The AO series numbers 5 + 5–6. The holotype is deposited in the Royal Ontario Museum, ROM 27569.



2012 ◽  
Vol 4 (1) ◽  
pp. 241-278 ◽  
Author(s):  
E. Lundberg ◽  
C. Juhlin ◽  
A. Nasuti

Abstract. The Møre-Trøndelag Fault Complex (MTFC) is one of the most prominent fault zones of Norway, both onshore and offshore. In spite of its importance, very little is known of the deeper structure of the individual fault segments comprising the fault complex. Most seismic lines have been recorded offshore or focused on deeper structures. This paper presents results from two reflection seismic profiles, located on each side of the Tingvollfjord, acquired over the Tjellefonna fault in the south-eastern part of the MTFC. Possible kilometer scale vertical offsets reflecting, large scale north-west dipping normal faulting separating the high topography to the south-east from lower topography to the north-west have been proposed for the Tjellefonna fault. In this study, however, the Tjellefonna fault is interpreted to dip approximately 50–60° towards the south-east to depths of at least 1.4 km. Travel-time modeling of reflections associated with the fault was used to establish the geometry of the fault structure at depth and detailed analysis of first P-wave arrivals in shot-gathers together with resistivity profiles were used to define the near surface geometry of the fault zone. A continuation of the structure on the north-eastern side of the Tingvollfjord is suggested by correlation of an in strike direction P-S converted reflection (generated by a fracture zone) seen on the reflection data from that side of the Tingvollfjord. The reflection seismic data correlate well with resistivity profiles and recently published near surface geophysical data. A highly reflective package forming a gentle antiform structure was also identified on both seismic profiles. The structure may be an important boundary within the gneissic basement rocks of the Western Gneiss Region. The Fold Hinge Line is parallel with the Tjellefonna fault trace while the topographic lineament diverges, following secondary fracture zones towards north-east.



2019 ◽  
Vol 91 (1) ◽  
pp. 533-540 ◽  
Author(s):  
Colton Lynner ◽  
Harm J. A. Van Avendonk ◽  
Anne Bécel ◽  
Gail L. Christeson ◽  
Brandon Dugan ◽  
...  

Abstract The eastern North American margin community seismic experiment (ENAM‐CSE) was conceived to target the ENAM Geodynamic Processes at Rifting and Subducting Margins (GeoPRISMS) primary site with a suite of both active‐ and passive‐source seismic data that would shed light on the processes associated with rift initiation and evolution. To fully understand the ENAM, it was necessary to acquire a seismic dataset that was both amphibious, spanning the passive margin from the continental interior onto the oceanic portion of the North American plate, and multiresolution, enabling imaging of the sediments, crust, and mantle lithosphere. The ENAM‐CSE datasets were collected on‐ and offshore of North Carolina and Virginia over a series of cruises and land‐based deployments between April 2014 and June 2015. The passive‐source component of the ENAM‐CSE included 30 broadband ocean‐bottom seismometers (OBSs) and 3 onshore broadband instruments. The broadband stations were deployed contemporaneously with those of the easternmost EarthScope Transportable Array creating a trans‐margin amphibious seismic dataset. The active‐source portion of the ENAM‐CSE included several components: (1) two onshore wide‐angle seismic profiles where explosive shots were recorded on closely spaced geophones; (2) four major offshore wide‐angle seismic profiles acquired with an airgun source and short‐period OBSs (SPOBSs), two of which were extended onland by deployments of short‐period seismometers; (3) marine multichannel seismic (MCS) data acquired along the four lines of SPOBSs and a series of other profiles along and across the margin. During the cruises, magnetic, gravity, and bathymetric data were also collected along all MCS profiles. All of the ENAM‐CSE products were made publicly available shortly after acquisition, ensuring unfettered community access to this unique dataset.



1971 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
J. W. Halse ◽  
J. D. Hayes

The Offshore Kimberley Block area is mainly held under petroleum exploration permit by a group of companies of which B.O.C. of Australia Ltd. is operator. Exploration activities of the Group have shown the area to be a distinctive and separate major sedimentary basin, which it is proposed to term the Browse Basin. The basin is separated from the Bonaparte Gulf Basin in the north by the Londonderry Arch, and from the Offshore Canning Basin to the south by the Leveque Platform. It covers an area of over 60,000 square miles.



Author(s):  
Natalie Rotermund ◽  
Jürgen Guerrero-Kommritz

Two species of the bobtail squid Heteroteuthis are reported from the Atlantic Ocean, H. dispar in the North Atlantic Ocean and H. dagamensis in the South Atlantic Ocean. In total 58 individuals were examined, 23 belonging to the species Heteroteuthis dispar and 35 belonging to the species H. dagamensis. All specimens were captured during the Walther Herwig Expeditions 1966, 1968, 1976 and 1982. A full description of both sexes of H. dispar and H. dagamensis is provided. These two species can only be distinguished by means of the male's enlarged suckers on arm pair III. Females are not useful for taxonomic identifications and are morphologically identical in both species. The results do not support the definition of subgenera in this genus. This is the first report for Heteroteuthis dagamensis in the South-West Atlantic Ocean.



Sign in / Sign up

Export Citation Format

Share Document