Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the Jiaodong Peninsula, eastern China

2007 ◽  
Vol 280 (1) ◽  
pp. 303-316 ◽  
Author(s):  
H.-R. Fan ◽  
F.-F. Hu ◽  
J.-H. Yang ◽  
M.-G. Zhai
2020 ◽  
Vol 120 ◽  
pp. 103412
Author(s):  
Yu-Long Yang ◽  
Pei Ni ◽  
Jun-Yi Pan ◽  
Zhe-Chi ◽  
Jun-Ying Ding ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 214 ◽  
Author(s):  
Si-Rui Wang ◽  
Li-Qiang Yang ◽  
Jian-Gang Wang ◽  
En-Jing Wang ◽  
Yong-Lin Xu

The Jiaodong Peninsula in eastern China is the third largest gold-mining area and one of the most important orogenic gold provinces in the world. Ore shoots plunging in specific orientations are a ubiquitous feature of the Jiaodong lode deposits. The Sizhuang gold deposit, located in northwestern Jiaodong, is characterized by orebodies of different occurrences. The orientation of ore shoots has remained unresolved for a long time. In this paper, geostatistical tools were used to determine the plunge and structural control of ore shoots in the Sizhuang deposit. The ellipses determined by variogram modeling reveal the anisotropy of mineralization, plus the shape, size, and orientation of individual ore shoots. The long axes of the anisotropy ellipses trend NE or SEE and plunge 48° NE down the dip. However, individual ore shoots plunge almost perpendicular to the plunge of the ore deposit as a whole. This geometry is interpreted to have resulted from two periods of fluid flow parallel to two sets of striations that we identified on ore-controlling faults. Thrust-related lineations with a sinistral strike-slip component were associated with early-stage mineralization. This was overprinted by dextral and normal movement of the ore-controlling fault that controlled the late-stage mineralization. This kinematic switch caused a change in the upflow direction of ore-forming fluid, which in turn controlled the orientation of the large-scale orebodies and the subvertical plunge of individual ore shoots. Thus, a regional transition from NW-to-SE-trending compression to NW-to-SE-trending extension is interpreted as the geodynamic background of the ore-forming process. This research exemplifies an effective exploration strategy for studying the structural control of the geometry, orientation, and grade distribution of orebodies via the integration of geostatistical tools and structural analysis.


2006 ◽  
Vol 89 (1-3) ◽  
pp. 161-164 ◽  
Author(s):  
Fang-Fang Hu ◽  
Hong-Rui Fan ◽  
Ming-Guo Zhai ◽  
Cheng-Wei Jin

2021 ◽  
pp. 014459872098811
Author(s):  
Yuanyuan Zhang ◽  
Zhanli Ren ◽  
Youlu Jiang ◽  
Jingdong Liu

To clarify the characteristics and enrichment rules of Paleogene tight sandstone reservoirs inside the rifted-basin of Eastern China, the third member of Shahejie Formation (abbreviated as Es3) in Wendong area of Dongpu Depression is selected as the research object. It not only clarified the geochemical characteristics of oil and natural gas in the Es3 of Wendong area through testing and analysis of crude oil biomarkers, natural gas components and carbon isotopes, etc.; but also compared and explained the types and geneses of oil and gas reservoirs in slope zone and sub-sag zone by matching relationship between the porosity evolution of tight reservoirs and the charging process of hydrocarbons. Significant differences have been found between the properties and the enrichment rules of hydrocarbon reservoirs in different structural areas in Wendong area. The study shows that the Paleogene hydrocarbon resources are quasi-continuous distribution in Wendong area. The late kerogen pyrolysis gas, light crude oil, medium crude oil, oil-cracked gas and the early kerogen pyrolysis gas are distributed in a semicircle successively, from the center of sub-sag zone to the uplift belt, that is the result of two discontinuous hydrocarbon charging. Among them, the slope zone is dominated by early conventional filling of oil-gas mixture (at the late deposition period of Dongying Formation, about 31–27 Ma ago), while the reservoirs are gradually densified in the late stage without large-scale hydrocarbon charging (since the deposition stage of Minghuazhen Formation, about 6–0 Ma). In contrast, the sub-sag zone is lack of oil reservoirs, but a lot of late kerogen pyrolysis gas reservoirs are enriched, and the reservoir densification and hydrocarbon filling occur in both early and late stages.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


2020 ◽  
Author(s):  
Yingxin Song ◽  
Dapeng Li ◽  
Ke Geng ◽  
Pengfei Wei ◽  
Lei Shu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document