scholarly journals Geological evolution of Central Asian Basins and the western Tien Shan Range

2017 ◽  
Vol 427 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Marie-Françoise Brunet ◽  
Edward R. Sobel ◽  
Tom McCann
2006 ◽  
Vol 37 (2) ◽  
pp. 93-105 ◽  
Author(s):  
W. Hagg ◽  
L.N. Braun ◽  
M. Weber ◽  
M. Becht

A conceptual precipitation–runoff model was applied in five glacierized catchments in Central Asia. The model, which was first developed and applied in the Alps, works on a daily time step and yields good results in the more continental climate of the Tien Shan mountains for present-day climate conditions. Runoff scenarios for different climates (doubling of CO2) and glacierization conditions predict an increased flood risk as a first stage and a more complex picture after a complete glacier loss: a higher discharge during spring due to an earlier and more intense snowmelt is followed by a water deficiency in hot and dry summer periods. This unfavourable seasonal redistribution of the water supply has dramatic consequences for the Central Asian lowlands, which depend to a high degree on the glacier melt water for irrigation and already nowadays suffer from water shortages.


2019 ◽  
Vol 22 (2) ◽  
pp. 121-128
Author(s):  
Kari Nupponen ◽  
Sergey Yu. Sinev

Three new species of the family Scythrididae are described from Central Asian mountains: Scythris cultelloides Nupponen & Sinev, sp. n., S. danilevskyi Nupponen & Sinev, sp. n. and S. ganesha Nupponen & Sinev, sp. n. One unknown species is reported but not formally described because only a single female is available.


2021 ◽  
Vol 62 (1) ◽  
pp. 44-67
Author(s):  
N.L. Dobretsov ◽  
M.M. Buslov ◽  
A.N. Vasilevskiy ◽  
S.M. Zhmodik ◽  
A.V. Kotlyarov

Abstract ––The use of satellite-geological information permits generalization of studies of various active geologic processes in a new way. As reference examples, we consider geologic regions extensively covered by research with our contribution. The joint use of satellite images, maps of gravity anomalies, and seismic-tomography data for Kamchatka made it possible to construct 3D models of surficial and deep-seated (depths from 10–50 to 650 km) volcanic structures. For young volcanosedimentary structures of Kamchatka, it is possible to trace the interaction of various processes, from crystallization of magmas in magma chambers to ore and oil formation in calderas. Ancient tectonic structures and superposed Cenozoic deformations in the Tien Shan, Altai, and Baikal regions are clearly displayed in satellite images and on maps of gravity anomalies. The long-range impact of the Indo-Eurasian collision on the Tien Shan, Altai, and Baikal regions was expressed as shearing, which resulted in the most contrasting structures in the zones of junction of regional faults and along the framing of cratonal structures. The active structures of Gorny Altai contain numerous travertines, whose abundance is correlated with seismic activity. The mass formation of methane and gas hydrates in Lake Baikal might be related to mantle plume fluids.


2021 ◽  
Vol 929 (1) ◽  
pp. 012003
Author(s):  
M M Buslov

Abstract In recent decades, extensive geological, geophysical and geochronological data have been obtained that characterize in detail the results of the distant tectonic impact of the Indo-Eurasian collision on the lithosphere of Central Asia, which led to the formation of the mountain systems of the Pamirs, Tien Shan, Altai-Sayan region and Transbaikalia from the Late Paleogene (about 25 million years ago). It has been established that the formation of the structure of Central Asia occurred as a result of the transmission of deformations from the Indo-Eurasian collision over long distances according to the “domino principle” through the rigid structures of Precambrian microcontinents located among the Paleozoic-Mesozoic folded belts. The study of peneplain surfaces deformed into simple folds on high-mountain plateaus surrounded by rugged mountain ranges made it possible to reveal the parameters of the deformations of the earth’s crust, the interrelationship of the formation of relief and sedimentary basins. Apatite track dating data, structural and stratigraphic analyses of Late Cenozoic sediments in the basins prove a period of intense tectonic activation the entire lithosphere of Central Asia from the Indian continent to the Siberian platform starting from the Pliocene (about 3.5 million years). As a result of reactivation of the heterogeneous basement of Central Asia, high seismicity was manifested, which is concentrated mainly along the border of the microcontinents (Central Tianshan, Junggar and Tuva-Mongolian) and the Siberian craton, as well as in the zones of articulation of regional faults.


2010 ◽  
Vol 10 (4) ◽  
pp. 647-659 ◽  
Author(s):  
C. Narama ◽  
M. Duishonakunov ◽  
A. Kääb ◽  
M. Daiyrov ◽  
K. Abdrakhmatov

Abstract. On 24 July 2008, a glacier lake outburst flood (GLOF) occurred at the western (w-) Zyndan glacier lake in the Tong District of Ysyk-Köl Oblast, Kyrgyzstan. The flood killed three people and numerous livestock, destroyed infrastructure, and devastated potato and barley crops as well as pastures. Tuurasuu village and a downstream reservoir on the Zyndan river escaped heavy damage because the main flood was diverted toward the Tong river. RTK-GPS and satellite data (Landsat 7 ETM+, ALOS/PRISM, and ALOS/AVNIR-2) reveal that the flood reduced the lake area from 0.0422 km2 to 0.0083 km2, discharging 437 000 m3 of water. This glacier lake was not present in a Landsat 7 ETM+ image taken on 26 April 2008. It formed rapidly over just two and half months from early May to the late July, when large amounts of snow and glacier melt water became trapped in a basin in the glacier terminus area, blocked by temporary closure of the drainage channel through the terminal moraine that included much dead-ice. In the same mountain region, most other glacier-lake expansions were not particularly large during the period from 1999–2008. Although events like the w-Zyndan glacier lake outburst occur infrequently in the high Central Asian mountains, such fast developing, short-lived lakes are particularly dangerous and not easy to monitor using satellite data. Appropriate measures to protect against such lake outburst hazards in this region include educating residents on glacier hazards and monitoring techniques, providing frequently updated maps of glacier lakes, and planning and monitoring land-use, including house locations.


1981 ◽  
Vol 2 ◽  
pp. 103-108 ◽  
Author(s):  
O. P. Shcheglova ◽  
O. P. Chizhov

All available data on suspended sediment concentration and sediment discharge for Central Asian rivers have been used to estimate the small-grained sediment discharge from glaciated areas. Glacial streams discharge the bulk of suspended material during the period of intensive melting (July to September). There is a good exponential relationship between the suspended sediment concentration (or sediment discharge) and air temperature over glaciers. The area of the largest glacier in the watershed is another factor influencing the silt content and sediment run-off. Its contribution is smaller than that of air temperature. Yearly sediment run-off for glacial rivers in the Pamir and Tien Shan has been computed. Highest values are from the Pamir with many rivers yielding 3000 tonnes km–2 (11 200 tonnes km–2 for the Vukhsh river). The highest run-off in Tien Shan is 2 000 tonnes km–2 for the Chatkal river.


Sign in / Sign up

Export Citation Format

Share Document