scholarly journals The 24 July 2008 outburst flood at the western Zyndan glacier lake and recent regional changes in glacier lakes of the Teskey Ala-Too range, Tien Shan, Kyrgyzstan

2010 ◽  
Vol 10 (4) ◽  
pp. 647-659 ◽  
Author(s):  
C. Narama ◽  
M. Duishonakunov ◽  
A. Kääb ◽  
M. Daiyrov ◽  
K. Abdrakhmatov

Abstract. On 24 July 2008, a glacier lake outburst flood (GLOF) occurred at the western (w-) Zyndan glacier lake in the Tong District of Ysyk-Köl Oblast, Kyrgyzstan. The flood killed three people and numerous livestock, destroyed infrastructure, and devastated potato and barley crops as well as pastures. Tuurasuu village and a downstream reservoir on the Zyndan river escaped heavy damage because the main flood was diverted toward the Tong river. RTK-GPS and satellite data (Landsat 7 ETM+, ALOS/PRISM, and ALOS/AVNIR-2) reveal that the flood reduced the lake area from 0.0422 km2 to 0.0083 km2, discharging 437 000 m3 of water. This glacier lake was not present in a Landsat 7 ETM+ image taken on 26 April 2008. It formed rapidly over just two and half months from early May to the late July, when large amounts of snow and glacier melt water became trapped in a basin in the glacier terminus area, blocked by temporary closure of the drainage channel through the terminal moraine that included much dead-ice. In the same mountain region, most other glacier-lake expansions were not particularly large during the period from 1999–2008. Although events like the w-Zyndan glacier lake outburst occur infrequently in the high Central Asian mountains, such fast developing, short-lived lakes are particularly dangerous and not easy to monitor using satellite data. Appropriate measures to protect against such lake outburst hazards in this region include educating residents on glacier hazards and monitoring techniques, providing frequently updated maps of glacier lakes, and planning and monitoring land-use, including house locations.

2000 ◽  
Vol 22 ◽  
Author(s):  
Birbal Rana ◽  
Arun B. Shrestha ◽  
John M. Reynolds ◽  
Raju Aryal ◽  
Adarsha P. Pokhrel ◽  
...  

The Tsho Rolpa Glacier Lake stores about 100x 106 m3 of water behind an unconsolidated moraine dam in the Roiwaling Valley of central Nepal. The 150 m high terminal moraine has been deteriorating rapidly since the last 4-5 years, as buried dead-ice is being exposed. Displacement waves formed by the calving of the Trakarding Glacier terminus into the Tsho Rolpa are increasing in magnitude. Seepage from springs on the distal flank of the end moraine some 50 m below the dam crest and shallow slumps were also observed, and all of these phenomena indicate deterioration of the moraine dam. The majority of past studies suggested lowering the lake level to prevent a glacier lake outburst flood. Engineering work to lower the lake level down to 3 m by constructing an open channel on the terminal moraine began in May 1999 and ended successfully in July 2000. Several studies, including the ground penetrating radar survey, were conducted in association with the construction work. They provided the detailed information on subsurface conditions of the lake area. The construction of the open channel reduced the volume of water available to form a potential glacier lake outburst flood by about 20%. This work demonstrated for the first time in Nepal that such remediation of a glacier lake outburst is quite effective.


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 468
Author(s):  
Mirlan Daiyrov ◽  
Chiyuki Narama ◽  
Andreas Kääb ◽  
Takeo Tadono

In Kyrgyzstan, outburst flood disasters from glacial lakes are increasing. An example is the sudden drainage on 8 August 2019 of the Toguz-Bulak glacial lake in the Tosor river basin of the northern Tien Shan region. In this study, we used remote sensing and field surveys to examine the reasons for the outburst. We found that the lake area changed from 0.021 km² to 0.002 km2 due to the outburst, in which most of the initial 130,000 m3 of water discharged within four hours. In examining the longer-term behavior of this lake, we found that from 2010 through 2019, it appears in June and disappears in September every year. Its maximum area occurs in late July and early August. With the expansion of the lake basin between 2010 and 2019, the lake also increased greatly in size, particularly so in the three years before the outburst, linked to high summer temperatures and the resulting higher inflow of glacier meltwater, finally leading to the sudden drainage in 2019. Before this outburst, a 2-m high moraine dam retained the lake. Continuously inflowing meltwater and the related increasing pressure by the lake water mass eventually broke the moraine dam. Satellite radar interferometry revealed active displacement fringes in the lake basin and moraine dam due to the melting and subsidence of buried ice. An analysis using digital elevation models from 1964 and 2010 also confirms the surface lowering in the lake basin by up to 8.5 m and on the moraine dam by 2 m. Such lowering of the proglacial moraine complex destabilized the moraine dam.


2013 ◽  
Vol 54 (63) ◽  
pp. 221-228 ◽  
Author(s):  
James Turrin ◽  
Richard R. Forster ◽  
Chris Larsen ◽  
Jeanne Sauber

AbstractBering Glacier, Alaska, USA, has a ∼20 year surge cycle, with its most recent surge reaching the terminus in 2011. To study this most recent activity a time series of ice velocity maps was produced by applying optical feature-tracking methods to Landsat-7 ETM+ imagery spanning 2001-11. The velocity maps show a yearly increase in ice surface velocity associated with the down-glacier movement of a surge front. In 2008/09 the maximum ice surface velocity was 1.5 ±0.017 km a-1 in the mid-ablation zone, which decreased to 1.2 ±0.015 km a-1 in 2009/10 in the lower ablation zone, and then increased to nearly 4.4 ± 0.03 km a-1 in summer 2011 when the surge front reached the glacier terminus. The surge front propagated down-glacier as a kinematic wave at an average rate of 4.4 ±2.0 km a-1 between September 2002 and April 2009, then accelerated to 13.9 ± 2.0 km a-1 as it entered the piedmont lobe between April 2009 and September 2010. The wave seems to have initiated near the confluence of Bering Glacier and Bagley Ice Valley as early as 2001, and the surge was triggered in 2008 further down-glacier in the mid-ablation zone after the wave passed an ice reservoir area.


2014 ◽  
Vol 8 (2) ◽  
pp. 377-386 ◽  
Author(s):  
M. Juen ◽  
C. Mayer ◽  
A. Lambrecht ◽  
H. Han ◽  
S. Liu

Abstract. To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a set of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to capture statistically the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote-sensing techniques, using high-resolution satellite imagery, were used to extrapolate the in situ point measurements to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented that allows the estimation of ablation on a debris covered glacier by combining field data and remote-sensing information. The sub-debris ice ablation accounts for about 24% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacierized area. Although the ice cliffs occupy only 1.7% of the debris covered area, the melt amount accounts for approximately 12% of the total sub-debris ablation and 2.5% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus in a particular climate setting. Due to the fact that melt rates beyond 0.1 m of moraine cover are highly restricted, the shielding effect of the debris cover dominates over the temperature and elevation dependence of the ablation in the bare ice case.


2013 ◽  
Vol 107 ◽  
pp. 229-237 ◽  
Author(s):  
Zunyi Xie ◽  
Donghui ShangGuan ◽  
Shiqiang Zhang ◽  
Yongjian Ding ◽  
Shiyin Liu
Keyword(s):  

2017 ◽  
Vol 427 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Marie-Françoise Brunet ◽  
Edward R. Sobel ◽  
Tom McCann

2007 ◽  
Vol 53 (180) ◽  
pp. 91-98 ◽  
Author(s):  
Yong Zhang ◽  
Shiyin Liu ◽  
Yongjian Ding

AbstractMeltwater and runoff from Keqicar Baqi glacier, a large glacier in the southwestern Tien Shan, northwestern China, are simulated using a modified degree-day model including potential clear- sky direct solar radiation, coupled with a linear reservoir model for the period 1 July to 12 September 2003. There is good agreement between modelled and measured meltwater at ablation stakes and between simulated and observed runoff at the glacier terminus. A reconstruction of glacier meltwater and runoff from an assumed debris-free surface during the study period shows that the effect of the debris layer on glacier meltwater generation crucially affects glacier runoff. The model is also used to calculate glacier runoff given the climate scenario resulting from a doubling of CO2 as projected by the ReCM2 regional climate model. The projected changes in temperature and precipitation vary from 0 to 2.7°C and from 0 to 25%, respectively. Results indicate that glacier runoff increases linearly with temperature over these ranges whether or not the debris layer is taken into consideration. The effect of change in temperature is much more noticeable than that for change in precipitation. Due to the debris layer predominantly covering (and insulating) the ablation area, the response of glacier runoff is less sensitive to temperature increase with a debris-covered surface than with a debris-free surface. Glacier runoff is also markedly reduced when a reduced glacier area is prescribed in the +2.7°C scenario.


2006 ◽  
Vol 37 (2) ◽  
pp. 93-105 ◽  
Author(s):  
W. Hagg ◽  
L.N. Braun ◽  
M. Weber ◽  
M. Becht

A conceptual precipitation–runoff model was applied in five glacierized catchments in Central Asia. The model, which was first developed and applied in the Alps, works on a daily time step and yields good results in the more continental climate of the Tien Shan mountains for present-day climate conditions. Runoff scenarios for different climates (doubling of CO2) and glacierization conditions predict an increased flood risk as a first stage and a more complex picture after a complete glacier loss: a higher discharge during spring due to an earlier and more intense snowmelt is followed by a water deficiency in hot and dry summer periods. This unfavourable seasonal redistribution of the water supply has dramatic consequences for the Central Asian lowlands, which depend to a high degree on the glacier melt water for irrigation and already nowadays suffer from water shortages.


Sign in / Sign up

Export Citation Format

Share Document